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Abstract 

The hyper-representation theory appeared in mid 80’s. Nowdays, it is 
clear that this theory is refered to the very large class of hyperstructures 
since the Hv-structures are used. The main problem is that only few 
theorems, from the classical representation theory, can be transferred to 
hyperstructures. However, the main results prove that there is a strong 
relation with the fundamental structures corresponding to each Hv-
structure. Moreover, one can have results if the e-hyperstructures are 
used, that is the hyperstructures which are appropriate to Santilli’s iso-
theory.  We present the general problem and we give some results and 
applications on the topic.   
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1.  Introduction  

The main object of this paper is the class of hyperstructures called Hv-structures 
introduced in 1990 [10], which satisfy the weak axioms where the non-empty 
intersection replaces the equality. Some basic definitions:   

Algebraic hyperstructure is called a set H equipped with one hyperoperation 
(abbreviation: hyperoperation=hope) ⋅:H×H→P(H)-{∅}. Abbreviate by WASS the 
weak associativity: (xy)z∩x(yz)≠∅, ∀x,y,z∈H and by COW the weak commutativity: 
xy∩yx≠∅, ∀x,y∈H. The hyperstructure (H,⋅) is called Hv-semigroup if it is WASS, it is 
called Hv-group if it is reproductive Hv-semigroup, i.e. xH=Hx=H, ∀x∈H. 
Motivation. The quotient of a group with respect to an invariant subgroup, is a group. F. 
Marty 1934, states that, the quotient of a group by a subgroup is a hypergroup. Finally, 
the quotient of a group by a partition (or equivalently, by an equivalence relation) is an 
Hv-group [10], [11].  

In an Hv-semigroup the powers are defined by: h1={h}, h2=h⋅h,…, hn=h°h°…°h, 
where (°) is the n-ary circle hope, i.e. take the union of hyperproducts, n times, with all 
possible patterns of parentheses put on them. An Hv-semigroup (H,⋅) is cyclic of period 
s, if there is an h, called generator, and a natural s, the minimum:  H=h1∪h2∪…∪hs.  
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Analogously the cyclicity for the infinite period is defined [11]. If there is an h and s, the 
minimum: H=hs, then (H,⋅) is called single-power cyclic of period s. 

In an a similar way more complicated hyperstructures are defined:  

(R,+,⋅) is called Hv-ring if (+) and (⋅) are WASS, the reproduction axiom is valid for (+) 
and (⋅) is  weak distributive  with respect to (+):     

x(y+z)∩(xy+xz)≠∅,    (x+y)z∩(xz+yz)≠∅,   ∀x,y,z∈R. 

Let (R,+,⋅) be an Hv-ring, (M,+) be a COW Hv-group and there is an external hope 

⋅ :  R×M →P(M): (a,x)→ax 

such that, ∀a,b∈R and ∀x,y∈M, we have 

a(x+y)∩(ax+ay)≠∅,  (a+b)x∩(ax+bx)≠∅,  (ab)x∩a(bx)≠∅, 

then M is called an Hv-module over F. In the case of an Hv-field F, which is defined 
later, instead of an Hv-ring R, then the Hv-vector space is defined. 

For more definitions and applications on Hv-structures one can see [2],[4],[11].  

Let (H,⋅), (H,*) be Hv-semigroups on the same set H, the hope (⋅) is called smaller 
than the (*), and (*) greater than (⋅), iff there exists an  

f∈Aut(H,*)   such that   xy⊂f(x*y), ∀x,y∈H. 

Then we write ⋅≤* and we say that (H,*) contains (H,⋅). If (H,⋅) is a structure then 
it is called basic structure and (H,*) is called Hb-structure. 

Theorem 1.1 (Little Theorem). Greater hopes than the ones which are WASS or COW, 
are also WASS or COW, respectively. 

This Theorem leads to a partial order on Hv-structures and to a correspondence 
between them and posets. Thus, we obtain an extreme large number of Hv-structures 
just enlarging the results.  

Let (H,⋅) be hypergroupoid. We remove h∈H, if we take the restriction of (⋅) in the 
set H-{h}. h∈H absorbs h∈H if we replace h by h and h does not appear. h∈H merges 
with h∈H, if we take as product of any x∈H by h, the union of the results of x with both 
h, h, and consider h and h as one class with representative h [14]. 

An interesting class of Hv-structures is the following [11]: 

Definition 2.1 An Hv-structure is called very thin iff all hopes are operations except one, 
which has all hyperproducts singletons except only one, which is a subset of cardinality 
more than one. Therefore, in a very thin Hv-structure in H there exists a hope (⋅) and a 
pair (a,b)∈H2 for which ab=A, with cardA>1, and all the other products, are singletons. 

To compare classes we can see the small sets. In the problem of enumeration and 
classification of Hv-structures we have interesting results by using computers. The 
partial order restricts the problem in finding the minimal, up to isomorphisms, Hv-
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structures. We have results by Bayon & Lygeros as the following [1]: Let H={a,b} be a 
set of two elements, there are 20 Hv-groups, up to isomorphism. Up to isomorphism, in 
sets with three elements there are 6.494 minimal Hv-groups. 137 are abelians and 6.357 
are not; 6.152 are cyclic and 342 are not. The number of Hv-groups with three elements 
is 1.026.462. The 7.926 are abelians, 1.018.536 are not; 1.013.598 are cyclic and 12.864 
are not, 16 are very thin.  

2.  Fundamental relations 
The main tool in hyperstructures is the fundamental relation. M. Koscas, in 1970, 
defined in hypergroups the relation β and its transitive closure β*. This relation connects 
hyperstructures with the classical structures and is defined in Hv-groups as well. T. 
Vougiouklis [9], [10], [11], [12] introduced the γ* and ε* relations, which are defined, 
in Hv-rings and Hv-vector spaces, respectively. He also named these relations, 
fundamental.  
Definition 2.1 The fundamental relations β*, γ* and ε*, are defined, in Hv-groups, Hv-
rings and Hv-vector spaces, respectively, as the smallest equivalences so that the 
quotient would be group, ring and vector spaces, respectively.  

Specifying the above motivation we remark: Let (G,⋅) be a group and R be an 
equivalence relation (or a partition) in G, then (G/R,⋅) is an Hv-group, therefore the 
quotient (G/R,⋅)/β* is a group, the fundamental one. The classes of (G/R,⋅)/β* are a 
union of some of the R-classes.  

The way to find the fundamental classes is given by the following:  

Theorem 2.2 Let (H,⋅) be an Hv-group and denote by U the set of all finite products of 
elements of H.  We define the relation β in H by setting   xβy iff {x,y}⊂u  where u∈U.  
Then β* is the transitive closure of β. 

Analogous theorems are for Hv-rings, Hv-vector spaces and so on [11], [18].   

An element is called single if its fundamental class is singleton [11]. 
More general structures can be defined by using the fundamental structures. An 

application in this direction is the general hyperfield. There was no general definition of 
a hyperfield, but from 1990 [10] there is the following [11]:     

Definition 2.3 An Hv-ring (R,+,⋅) is called Hv-field if  R/γ*  is a field.  
Since the algebras are defined on vector spaces, the analogous to Theorem 2.2, on 

Hv-vector spaces is the following:  
Theorem 2.4 Let (V,+) be an Hv-vector space over the Hv-field F. Denote by U the set 
of all expressions consisting of finite hopes either on F and V or the external hope 
applied on finite sets of elements of F and V. We define the relation ε, in V as follows:  
xεy  iff {x,y}⊂u  where u∈U. Then the relation ε* is the transitive closure of the 
relation ε.  
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Definition 2.5 [11], [18]. Let (L,+) be Hv-vector space over the Hv-field (F,+,⋅),  
φ:F→F/γ*, the canonical map and ωF={x∈F:φ(x)=0}, where 0 is the zero of the 
fundamental field F/γ*.  Let ωL be the core of the canonical map φʹ:L→L/ε*  and denote 
by the same symbol 0 the zero of L/ε*. Consider the bracket (commutator) hope: 

[ , ]: L×L→P(L): (x,y)→ [x,y] 
then L is an Hv-Lie algebra over F if the following axioms are satisfied: 

(L1)  The bracket hope is bilinear, i.e. 

 [λ1x1+λ2x2,y]∩(λ1[x1,y]+λ2[x2,y]) ≠ ∅  

 [x,λ1y1+λ2y]∩(λ1[x,y1]+λ2[x,y2]) ≠ ∅,  ∀x,x1,x2,y,y1,y2∈L and λ1,λ2∈F 

(L2)  [x,x]∩ωL ≠ ∅,  ∀x∈L 

(L3)  ([x,[y,z]]+[y,[z,x]]+[z,[x,y]])∩ωL ≠ ∅,  ∀x,y∈L 
 This is a general definition so one can use special cases in order to face problems 

in applied sciences.  
 The definition of enlarged hyperstructures, introduces a new class [14]: 

Definition 2.6 The Hv-semigroup (H,⋅) is called h/v-group if H/β* is a group.    
The class of h/v-groups is more general than the Hv-groups since in h/v-groups the 

reproductivity is not valid.  However, the reproductivity of classes is valid, i.e. if H is 
partitioned into equivalence classes σ(x), then xσ(y)=σ(xy)=σ(x)y, ∀x,y∈H [24]. This is 
so because the quotient is reproductive. In a similar way the h/v-rings, h/v-fields, h/v-
modulus, h/v-vector spaces etc are defined.  

Construction 2.7 [14]. Let (H,⋅) be an Hv-semigroup and v∉H and (H,⋅) be its attached 
h/v-group. Consider a 0∉H and define in  Ho=H∪{v,0} two hopes: 

hyperaddition (+) and hypermultiplication (⋅), by the following multiplicative tables: 

 
+ 0 y v  ⋅ 0 y v 
0 0 H v  0 0 0 0 
x H v 0  x 0 xy v 
v v 0 H  v 0 v H 

 
Then (Ho,+,⋅) is an h/v-field with (Ho,+,⋅)/γ*≅Z3. The hope (+) is associative, (⋅) is 
WASS and weak distributive with respect to (+). 0 is zero absorbing and single element 
but not scalar in (+). The (Ho,+,⋅) is called the Attached h/v-field of the (H,⋅). 

Denote by U the set of all finite products of elements of a hypergroupoid (H,⋅). 
Consider the relation defined as follows:  
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xLy  iff  there exists  u∈U  such that  ux∩uy≠∅. 
Then the transitive closure L* of L is called left fundamental reproductivity 

relation. Similarly, the right fundamental reproductivity relation R* is defined.  

Theorem 2.8 If (H,⋅) is a commutative semihypergroup, i.e. the strong commutativity 
and the strong associativity is valid, then the strong expression of the above L relation:  
ux=uy, has the property: L*=L.   
Theorem 2.9 Let (H,⊗) be an Hb-semigroup with commutative the basic semigroup 
(H,⋅), has at least one element w∈H such that the set w⋅H is finite. Then (H/L*,⊗), where 
L is the relation: xLy iff  there exists z∈H such that zx=zy and (⊗) is the induced hope 
on classes, (i.e. L is defined with respect to (⋅)), is a finite commutative h/v-group.  

The uniting elements method was introduced by Corsini–Vougiouklis [3] in 1989. 
With this method one puts in the same class, two or more elements. This leads, through 
hyperstructures, to structures satisfying additional properties. The uniting elements 
method is the following: Let G be algebraic structure and d, a property which is not 
valid. Suppose that d is described by a set of equations; then, take the partition in G for 
which it is put together, in the same class, every pair of elements that causes the non-
validity of the property d. The quotient by this partition G/d is an Hv-structure. Then, 
quotient out the Hv-structure G/d by the fundamental relation β*, a stricter structure 
(G/d)β* for which the property d is valid, is obtained. 

It is very importand if more properties are desired. The reason is that, some of the 
properties lead straighter to the classes than others, thus, it is better to apply first them. 
One can do this because analogous to the following theorem is valid, for the several 
hyperstructures: 

Theorem 2.10 [11]. Let (R,+,⋅) be a ring, and F={f1,…, fm, fm+1,…, fm+n}be a system of 
equations on R consisting of two subsystems  Fm ={f1,…,fm} and  Fn={fm+1,…, fm+n}. Let 
σ, σm be the equivalence relations defined by the uniting elements procedure using the 
systems F and Fm respectively, and let σn be the equivalence relation defined using the 
induced equations of Fn on the ring  Rm= (R/σm)/γ*.  Then 

 (R/σ)/γ* ≅ (Rm/σn)/γ*. 
3.  Large classes of hyperstructures 

A large class of Hv-structures is the following [17]: 

Definition 3.1 Let (G,⋅) be groupoid (resp., hypergroupoid) and f:G→G be a map. We 
define a hope (∂), called theta-hope, we write ∂-hope, on G as follows 

x∂y = {f(x)⋅y, x⋅f(y)},  ∀x,y∈G,   (resp. x∂y= (f(x)⋅y)∪(x⋅f(y)), ∀x,y∈G) 

If (⋅) is commutative then ∂ is commutative. If (⋅) is COW, then ∂ is COW. 

If (G,⋅) is a groupoid (or hypergroupoid) and f:G→P(G)-{∅} be any multivalued 
map. We define the ∂-hope on G as follows:  x∂y = (f(x)⋅y)∪(x⋅f(y)), ∀x,y∈G. 
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 Let (G,⋅) be a groupoid, fi: G→G, i∈I,  be a set of maps on G.  The   

f∪:G→P(G): f∪(x)={fi(x)⏐i∈I}, 

is the union of fi(x). We have the union ∂-hope (∂), on G if we take f∪(x).  If  f ≡f∪(id), 
then we have the b-∂-hope.  

Motivation for the definition of the theta-hope is the map derivative where only 
the multiplication of functions can be used. The basic property is that if (G,⋅) is a 
semigroup then for every f, the ∂-hope is WASS.  

Several results can be obtained using ∂-hopes [17]:  

Example. Consider the group of integers (Z,+) and n≠0 be a natural number. Take the 
map f such that f(0)=n and f(x)=x, ∀x∈Z-{0}.  Then  (Z,∂)/β* ≅ (Zn,+). 

Theorems 3.2 (a) In integers (Z,+,⋅) fix n≠0, a natural number. Consider the map f such 
that f(0)=n and f(x)=x, ∀x∈Z-{0}. Then (Z, ∂+, ∂⋅), where ∂+ and ∂⋅ are the ∂-hopes 
refereed to the addition and the multiplication respectively,  is an Hv-near-ring, with  

(Z,∂+,∂⋅)/γ* ≅ Zn.    

(b) In (Z,+,⋅) with n≠0, take f such that f(n)=0 and f(x)=x, ∀x∈Z-{n}. Then (Z,∂+,∂⋅) is 
an Hv-ring, moreover,   (Z,∂+,∂⋅)/γ* ≅ Zn. 

Special case of the above is for n=p, prime, then (Z,∂+,∂⋅) is an Hv-field. 

Theorem 3.3 Let (V,+,⋅) be an algebra over the field (F,+,⋅) and  f:V→V be a map. 
Consider the ∂-hope defined only on the multiplication of the vectors (⋅), then (V,+,∂) is 
an Hv-algebra over F, where the related properties are weak. If, moreover f is linear then 
we have more strong properties. 

Theorem 3.4 Let (A,+,⋅) be an algebra over the field F. Take any map f: A→A, then the 
∂-hope on the Lie bracket  [x,y]=xy-yx,  is defined as follows 

x∂y = {f(x)y-f(y)x, f(x)y-yf(x), xf(y)-f(y)x, xf(y)-yf(x)}. 

then (A,+,∂) is an Hv-algebra over F, with respect to the ∂-hopes on Lie bracket, where 
the weak anti-commutativity and the inclusion linearity is valid.  

An important large class of hyperstructures created from classical structured is the 
following [9],[11],[12],[13]: 

Definition 3.5 Let (G,⋅) be groupoid, then for every P⊂G, P≠∅, we define the following 
hopes called P-hopes:    

P: xPy=(xP)y∪x(Py),  Pr: xPry=(xy)P∪x(yP),  Pl: xPly=(Px)y∪P(xy), ∀x,y∈G. 
The (G,P), (G,Pr) and (G,Pl) are called P-hyperstructures. The most usual case is 

if (G,⋅) is semigroup, then  xPy=(xP)y∪x(Py)=xPy  and (G,P) is a semihypergroup but 
we do not know about (G,Pr) and (G,Pl). In some cases, depending on the choice of P, 
the (G,Pr) and (G,Pl) can be associative or WASS.  
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A generalization of P-hopes, needed in Santilli’s isotheory, is the following [5]:   

Construction 3.6 Let (G,⋅) be an abelian group and P any subset of G with more than 
one elements. We define the hope (×P) as follows: 

        x⋅P⋅y = {x⋅h⋅y ⎪ h∈P}    if   x≠e  and  c≠e 
     x×Py  = 
                    x⋅y                                   if   x=e   or  y=e 

we call this hope Pe-hope. The hyperstructure (G,×P) is abelian Hv-group. 

4.  Representations of hyperstructures 
In the classical theory of representations we have the following basic definitions:  Let G 

be a group and V be a finite dimensional vector space over the field F. A 

representation of G is a homomorphism ρ: G→Aut(V) of G into the set of 

automorphisms of V. Analogous definitions are given for complicate structures: Let L 

be a Lie algebra then a rep of L is a homomorphism ρ: L→gl(V), from L into 

linear transformations on V over F. Since there exists 1-1 correspondence on the sets of 

all endomorphisms with n×n matrices, where n=dimV, any representation corresponds 

to each element, of a finite group, a matrix, and this set of matrices acts exactly as the 
group. With this theory, mathematicians try to transfer the study of structures into the 
study of matrices which is clear and easy. Ado’s theorem states that all finite 
dimensional Lie algebras have a faithful finite dimensional representation. The two steps 
in representation theory: first, by the Cayley’s theorem every group has a faithful 
representation by permutations. Second, every permutation group of order n can be 
represented by n×n monomial matrices. The above steps are clear but the obtained 
representations are not useful since the matrices are of type n×n. Thus, the main attempt 
is to reduce the dimension of representations. Most important is to find the irreducible 
representations over the field of real or complex numbers. The representation theory 
represents all groups in one form so that they can be compared and studied in the same 
way. Thus the low dimensional representations are most useful.   

The corresponding theory on hyperstructures is the representation theory of Hv-
groups by Hv-matrices. 
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Definitions 4.1 [11], [13], [15], [16]. Hv-matrix is called a matrix with entries elements 
of an Hv-ring or Hv-field. The hyperproduct of two Hv-matrices (aij) and (bij), of type 
m×n and n×r respectively, is defined, in the usual manner but it is a set of m×r Hv-
matrices. The sum of products of elements of the Hv-ring is the union of the sets 
obtained with all possible parentheses put on them, called n-ary circle hope on the 
hyperaddition. The hyperproduct of Hv-matrices is not nessesarily WASS. 

The problem of the Hv-matrix representations is the following: 

Let (H,⋅) be Hv-group. Find an Hv-ring (R,+,⋅), a set  MR={(aij)⏐aij∈R} and a map     

T: H→MR: h! T(h)  such that  T(h1h2)∩T(h1)T(h2)≠∅, ∀h1,h2∈H. 

The map T is called Hv-matrix representation.    

If the T(h1h2)⊂T(h1)(h2), ∀h1,h2∈H  is valid, then T is called inclusion representation.   

If   T(h1h2)=T(h1)(h2)={T(h)⏐h∈h1h2}, ∀h1,h2∈H, then T is called good representation.   
If T is one to one and good then it is a faithful representation. 

The problem of representations is complicated because the cardinality of the 
product of Hv-matrices is very big. But it can be simplified in special cases such as the 
following: 

(a) The Hv-matrices are over Hv-rings with 0 and 1 and if these are scalars.  
(b) The Hv-matrices are over very thin Hv-rings. 

(c) The case of 2×2 Hv-matrices. 
(d)  The case of Hv-rings which contains singles, then these act as absorbings.  

The main theorem of representations is the following [19]:       
Theorem 4.2 A necessary condition in order to have an inclusion representation T of an 
Hv-group (H,⋅) by n×n Hv-matrices over the Hv-ring (R,+,⋅) is the following: 

For all classes β*(x), x∈H there must exist elements aij∈H, i,j∈{1,...,n}  such that 

T(β*(a)) ⊂ {A= (aʹij)⏐aʹij∈γ*(aij), i,j∈{1,...,n}} 

Theorem 4.3 Every inclusion representation T: H→MR: a! T(a)=(aij)  of an Hv-group 
(H,⋅) by n×n Hv-matrices over the Hv-ring (R,+,⋅), induces an homomorphic n×n 
representation T* of the fundamental group H/β* over the fundamental ring R/γ* by 
setting   

T*(β*(a))=[γ*(aij)],   ∀β*(a)∈H/β*, 

where the element γ*(aij)∈R/γ* is the ij entry of the matrix T*(β*(a)). Then T* is called 
fundamental induced representation of T. 

 Denote trφ(T(x)) = γ*(T(xii)) the fundamental trace, then the mapping 

XT: H→R/γ*: x! XT (x)= trφ (T(x))= trT*(x) 
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is called fundamental character.  

For an attached Hv-field (Ho, +, ⋅), in  Σaik⋅bkj  the terms aik⋅bkj could be 0,v,x or H 
(where x∈H). But any sum is only 0 or v or H.  Thus, for finite Hv-fields (Ho, +, ⋅), if the 
set H appears in t entries then the cardinality of the hyperproducts is (cardH)t. 

The main attached h/v-fields give hyperfields where the cardinality of products is 
small, since 0 is absorbing. Removing, absorbing and merging we reduce the cardinality. 
Constructions 4.4 

(i)  Let (H,⋅) be a Hv-group, then for every (⊕) such that  x⊕y⊃{x,y}, ∀x,y∈H, the 
(H,⊕,⋅) is an Hv-ring. These Hv-rings are called associated to (H,⋅) Hv-rings. In 
representation theory of hypergroups, in sense of Marty, there are three associated 
hyperrings (H,⊕,⋅) to (H,⋅). The (⊕) is defined respectively, ∀x,y∈H, as follows: 

type a: x⊕y={x,y},   type b: x⊕y=β*(x)∪ β*(y),   type c: x⊕y=H. 
In the above types the strong associativity and strong distributivity, is valid.  

(ii)  Let (H,+) be Hv-group. Then for every hope (⊗) such that x⊗y⊃{x,y}, ∀x,y∈H, the 
hyperstructure (H,+,⊗) is an Hv-ring.  

We conclude with some open problems on representations on hypergroups: 

(a)  Find standard Hv-rings and Hv-fields to represent all Hv-groups by Hv-matrices.  
(b)  Find representations by Hv-matrices over standard finite Hv-rings analogous to Zn.  

(c)  Find the ‘minimal’ hypermatrices corresponding to the minimal hopes. 
5.  Applications on Santilli’s iso-theory 

Last decades Hv-structures have applications in other branches of mathematics and in 
sciences. These applications range from biomathematics -conchology, inheritance- and 
hadronic physics or on leptons to mention but a few. The hyperstructure theory is 
closely related to fuzzy theory; consequently, hyperstructures can be widely applicable 
in industry and production, too [2], [4], [5], [7], [8].  

The Lie-Santilli theory on isotopies was born in 1970’s to solve Hadronic 
Mechanics problems. Santilli proposed a ‘lifting’of the n-dimensional trivial unit matrix 
of a normal theory into a nowhere singular, symmetric, real-valued, positive-defined, n-
dimensional new matrix. The original theory is reconstructed such as to admit the new 
matrix as left and right unit [6]. The isofields needed in this theory correspond into the 
hyperstructures were introduced by Santilli - Vougiouklis in 1996 [7] and they are 
called e-hyperfields. The Hv-fields can give e-hyperfields which can be used in the 
isotopy theory in applications as in physics or biology.  

Definition 5.1 A hyperstructure (H,⋅) which contain a unique scalar unit e, is called e-
hyperstructure. In an e-hyperstructure, we assume that for every element x, there exists 
an inverse  x-1, i.e.  e∈x⋅x-1∩x-1⋅x.        
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Definition 5.2  A hyperstructure (F,+,⋅), where (+) is an operation and (⋅) is a hope, is 
called e-hyperfield if the following axioms are valid: (F,+) is an abelian group with the 
additive unit 0, (⋅) is WASS, (⋅) is weak distributive with respect to (+), 0 is absorbing 
element: 0⋅x=x⋅0=0, ∀x∈F, there exist a multiplicative scalar unit 1, i.e. 1⋅x=x⋅1=x, 
∀x∈F, and ∀x∈F there exists a unique inverse x-1, such that  1∈x⋅x-1∩x-1⋅x.  

The elements of an e-hyperfield are called e-hypernumbers. In the case that the 
relation: 1=x⋅x-1=x-1⋅x, is valid, then we say that we have a strong e-hyperfield, [5], [8], 
[18], [19].  

Definition 5.3 Main e-Construction. Given a group (G,⋅), where e is the unit, then we 
define in G, a large number of hopes (⊗) as follows:   

x⊗y = {xy, g1, g2,…}, ∀x,y∈G-{e}, and g1, g2,…∈G-{e} 
g1, g2,… are not necessarily the same for each pair (x,y).  (G,⊗) is an Hv-group, it is an 
Hb-group which contains the (G,⋅). (G,⊗) is an e-hypergroup. Moreover, if for each x,y 
such that  xy=e, so we have  x⊗y=xy, then  (G,⊗) becomes a strong e-hypergroup.  

The proof is immediate ftom the Little Theorem. Moreover one can see that the 
unit e is a unique scalar and for each x in G, there exists a unique inverse x-1, such that 
1∈x⋅x-1∩x-1⋅x. If the 1=x⋅x-1=x-1⋅x, is valid, then (G,⊗) is strong e-hypergroup.   

The main e-construction gives an extremely large number of e-hopes.  
Example 5.4 Consider the quaternion group  

Q={1,-1, i,-i, j,-j, k,-k} with defining relations   i2 = j2 = -1,  ij = -ji = k. 

Denoting i={i,-i}, j={j,-j}, k={k,-k} we may define a very large number (∗) hopes by 
enlarging only few products. For example, (-1)∗k=k, k∗i=j and i∗j=k. Then the 
hyperstructure (Q,∗) is a strong e-hypergroup. 
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