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Abstract 

Humans’ creativity led to machines that outperform human capabilities in 

terms of workload, effectiveness, precision, endurance, strength, and 

repetitiveness. It has always been a vision and a way to transcend the existence 

and to give more sense to life, which is precious. The common denominator of 

all these creations was that they were meant to replace, enhance or go beyond 

the mechanical capabilities of the human body. The story takes another 

bifurcation when Alan Turing introduced the concept of a machine that could 

think, in 1950. Artificial intelligence, presented as a term in 1956, describes the 

use of computers to imitate intelligence and critical thinking comparable to 

humans. However, the revolution began in 1943, when artificial neural 

networks was an attempt to exploit the architecture of the human brain to 

perform tasks that conventional algorithms had little success with. Artificial 

intelligence is becoming a research focus and a tool of strategic value. The same 

observations apply in the field of healthcare, too. In this manuscript, we try to 

address key questions regarding artificial intelligence in medicine, such as 

what artificial intelligence is and how it works, what is its value in terms of 

application in medicine, and what are the prospects? 
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Core tip: Artificial intelligence algorithms seem to perform better than statistics 

or humans, especially when it comes to big data. Artificial intelligence is a 

valuable tool for people and their healthcare. Healthcare providers will 

embrace, adapt, and evolve accordingly. Artificial intelligence will eventually 

create the pre- and post- AI era in medicine, too. 

 

INTRODUCTION 

It has always been an area of challenge for humans to create machines to 

outperform human capabilities in terms of workload, effectiveness, precision, 

endurance, strength, and repetitiveness. It is a way to transcend the existence 

and to give more sense to life, which is precious. The common denominator of 

all these creations was that they were meant to replace, enhance or go beyond 

the mechanical capabilities of the human body. This path of evolution is 

smooth and predictable. This story takes a different shift or another bifurcation 

to be more precise when Alan Turing introduced the concept of a machine that 

could achieve human-level performance in thinking in 1950[1]. 

However, the revolution began with the computational model for neural 

networks (NNs) with Warren McCulloch and Walter Pitts, and this time the 

evolution is unpredictable[2]. In mathematical terms, the network forms a 

directed, weight graph. This point of view was reinforced by Norbert Wiener, 

who introduced the feedback[3]. Artificial Neural Network (ANN) started at 

first level as an attempt to exploit the architecture of the human brain to 

perform tasks that conventional algorithms had little success with. ANNs 

architecture is based on nodes arranged in layers and connected via their 

input(s) and output(s), in a way attempting to imitate brain neurons activity 

(Figure 1). Artificial intelligence (AI) as a term describes the use of computers 

to imitate intelligence and critical thinking comparable to humans, and it was 

first mentioned by John McCarthy during a conference held in 1956[4]. 

 

HOW IT WORKS 



But how it works? Let us take a brain neuron; if the incoming synaptic stimuli 

(inputs) are of sufficient intensity, then the neuron will fire (output). Figure 2 

shows a model of a single artificial neuron with three inputs and one output. 

Inputs and outputs are "0" or "1". In order to keep things simple, the following 

example will not use a firing threshold. We want to train the neuron according 

to the following pattern: 

Case: [input a – input b – input c]  [output] 

Case A: [0 – 0 – 0]  [0] 

Case B: [0 – 0 – 1]  [1] 

Case C: [1 – 1 – 0]  [0] 

Case D: [1 – 0 – 0]  [0] 

The first step is to weight each case input by multiplying it with a random 

positive or negative number. Then we add all the weighted inputs of each case. 

Next thing, we normalize this sum of each case by using a sigmoid function in 

order to get a result between 0 and 1, as an output of the neuron for each case. 

Now we calculate the error between the normalized sum and the actual 

training output of each case; we use this error to adjust the weights to be used 

for the next round of calculations. Adjusting the weights takes under 

consideration the input, the calculated output, and the magnitude of the error, 

in a way that the adjustment to be proportional to the magnitude of the error 

(sigmoid curve gradient works for this). By repeating this cycle thousands of 

times, the neuron finally makes almost no adjustments to the weights of the 

inputs, meaning that it has been trained to recognize the pattern. Now one may 

introduce a new set of three inputs, and the already trained algorithm will be 

able to provide an output that corresponds to the already recognized pattern. 

Thus, one could summarize that artificial thinking is a pattern recognition by 

weighting, comparing, and adjusting many many times before a pattern 

replication output is created. 

A sophisticated AI algorithm needs to be exposed to data feeds, which are 

structured and labelled in a way the algorithm can recognize (i.e. numbers, 

pixels, colours). 



Ng and Dean, Stanford and Google, respectively, leaders on computer science, 

created an ANN that learned to recognize higher-level concepts, such as human 

face, human body, or animals[5]. Unsupervised pre-training, increased 

computing power from multiple graphics process units (GPUs), and 

distributed computing allowed the use of larger (increased number of nodes) 

and deeper (increased number of layers) networks, particularly in image and 

visual recognition tasks, which became known as deep learning (DL)[6-8]. And 

now at high-level research, we use deep neural networks (DNNs) with tensor 

processing units (TPUs)[9]. 

Nowadays, the most representative area of thinking machines evolution has 

been the world of strategy board games. Board games, such as chess, shogi or 

go, are considered an expression of human intellect at the highest level; 

however, DNNs as AlphaGo, AlphaGo Master, AlphaGo Zero mastered all 

those sharp games[10-13]. The 3D models of proteins that AlphaFold generates 

are far more accurate than any that have come before marking significant 

progress on one of the core challenges in biology[14, 15]. 

 

AI APPLICATIONS IN HEALTHCARE 

Machine learning (ML) algorithms based on NNs have already been used in 

the field of healthcare, mainly in medical diagnosis and prognosis, disease 

treatment, drug development, gene editing, and personalized medicine. 

 

Disease diagnosis and prognosis 

Medical imaging plays a key role as an input. Plain film x-rays have been 

widely used as inputs in ML algorithms to teach them to diagnose lung 

conditions, such as pneumonia, emphysema, and tuberculosis or to detect bone 

age, maturity, and fractures[16-20]. NNs fed with chest computed tomography 

(CT) scans from smokers can identify and stage chronic obstructive pulmonary 

disease as well as predict mortality[21]. In the field of ophthalmology, AI-based 

algorithms have been utilized for fundus screening in diabetic patients, age-

related macular degeneration, and congenital cataract diagnosis[22-27]. Cancer 



diagnosis is another field that ML and NNs have been tested and proved to be 

superior or non-inferior than humans, including malignancy detection in 

pathology images, in screening mammography, in CT or magnetic resonance 

imaging (MRI) or positron emission tomography (PET) scans, and skin clinical 

images[28-40]. Also, ML algorithms fed with endoscopic images and videos 

reached human-like performance in gastrointestinal neoplasms detection, such 

as of oesophagal cancer, gastric cancer, and large bowel polyps[41-43]. 

Furthermore, cardiologists are investigating the ML NNs algorithms in the 

diagnosis, severity classification, and prognosis of cardiovascular diseases, by 

processing data obtained from electronic health records (HER), 

electrocardiography, echocardiography, coronary artery calcium scoring, 

coronary CT angiography, and MRI[44-47]. For example, AI models can predict 

survival outcomes given a specific diagnosis, such as pulmonary hypertension 

by 3D cardiac MRI processing[48]. Many studies are also existing in the field of 

neuroscience. DNNs can predict the future diagnosis of autism in high-risk 

children by processing brain MRIs, assess the progression of dementia by 

processing a single amyloid PET scan, detect intracranial haemorrhage on CTs, 

as well as to diagnose schizophrenia and predict the risk of suicide by the 

processing of functional MRIs (fMRIs) and EHR[49-54]. Finally, timely diagnosis 

of infectious diseases in terms of pathogen identification and antibiotic 

susceptibility testing is feasible through ML processing of bacterial Raman 

spectra or bacterial and viral mRNA[55, 56]. 

 

Disease treatment 

In the field of psychiatry, researchers used fMRI and proton magnetic 

resonance spectroscopy (1H-MRS) as inputs to a linguistic AI platform; as a 

result, they were able to manage lithium dosage in bipolar patients[57]. In 

another study, AI virtual interviewer could capture more post-traumatic stress 

symptoms from veterans than the human interviewers[58]. Moreover, in the 

field of surgery, as surgical robots are already here, AI implementation in 

operations is already happening in experimental and dental settings[59, 60]. 



 

Drug development 

The development of a new drug is a costly and time-consuming process, which 

includes identification of targets for intervention, hypothesis for a new 

compound, and clinical trials of level I, II, and III[61]. The recognition of a 

possible target and the hypotheses generation for a new compound relies on 

pattern recognition. Chemists are skilled to recognize such patterns, relate 

them to retrosynthetic analysis, and predict the ADMET properties (i.e. 

absorption, distribution, metabolism, excretion, and toxicity). DL architecture 

algorithms are up-and-coming tools in the field of drug development because 

they imitate chemists' pattern recognition skills. Moreover, it seems possible to 

advance the whole process to a next level by being able to de novo design of 

drugs, considering all the available domain, ligand-based, and associations 

data during the development of a model[62, 63]. The most successful paradigm 

of such an effort is the discovery of a new type of antibiotic, halicin, that has a 

different structure from known antibiotics and a broad-spectrum antibacterial 

activity including resistant strains such as pan-resistant Acinetobacter 

baumannii. The same DL algorithm was able to identify eight compounds with 

antibacterial activity and different structure comparing with the already 

known antibiotics[64]. Even if the main focus of DL-aided drug innovation is on 

small molecules, some approaches utilize DL to design proteins and develop 

antibodies[14, 15, 65]. 

 

Biomarkers 

The principles, approaches, and tools used in drug development are applied to 

the identification of biomarkers, which are molecules that when found in body 

fluids or tissues are pathognomonic, i.e. they provide absolute certainty for 

disease diagnosis. Biomarkers are useful in imaging, early diagnosis, 

prognosis, disease progression evaluation, risk assessment for developing a 

specific disease, and predicting patients' response to a drug. Pembrolizumab 

for malignancies carrying a specific genetic biomarker is an example of how 



AI-aided biomarker identification could lead to the development of targeted 

biotherapies[66]. There are more other AI biomarker studies like Tasaki et al. 

regarding drug responses for patients with rheumatoid arthritis, or like Khera 

et al. on genome-wide polygenic scores as a risk assessment to develop 

coronary artery disease, type 2 diabetes, atrial fibrillation, inflammatory bowel 

disease, or breast cancer[67, 68]. 

 

Gene editing 

Gene editing biotechnology of clustered regularly interspaced short 

palindromic repeats (CRISPR) and its associated protein 9 (Cas9) uses short 

RNAs as guides (sgRNA) to target a specific DNA location in order to cut and 

edit it. These guides, however, may fit DNA locations other than the desired 

target resulting in the so-called off-target effect. Thus, the selection of the 

sgRNA molecules to be used is of significant importance. ML algorithms have 

proved to be promising in the identification of such molecules caring the lowest 

possible off-target propensity for specific DNA targets[69, 70]. 

 

Personalized medicine 

Patients’ symptoms, signs, and test results have to be evaluated by a physician 

or a multidisciplinary team of experts before a treatment plan is suggested. IBM 

AI platform “Watson” was initially made known by winning a television quiz 

show competition. In a study by Wrzeszczynski et al., Watson managed, in 10 

minutes, to deliver a treatment plan for a glioblastoma case comparable to the 

plan that experts made in 160 hours[71]. In another study, Watson was able to 

suggest cancer therapeutic options that oncologists had overlooked[72]. It seems 

that if AI systems are provided with large enough amount of data, then they 

may outperform human physicians in diagnoses or treatment plans. The 

challenge becomes more intense when big data, such as omics, microbiome 

sequencing, EHR, social media, and digital images and videos are implemented 

to the patients' care. Big data are heterogeneous and continuously adding up. 

As a result, it is difficult for humans to manually analyze them in an effective 



and meaningful manner in the field of healthcare. In contrast, AI has the 

potential to undertake and deliver this task. Interesting approaches are the 

web-based AI platforms or AI smartphone applications which answer patients’ 

questions, provide them with advice on whether their condition requires 

medical attention, and monitor adherence to medications[73, 74]. 

 

CONCLUSIONS 

AI research is expanding, and there are increasing AI applications in medicine, 

too. It is a quickly evolving new era given that DL algorithms seem to perform 

better than statistics or humans, especially when it comes to big data. AI is a 

valuable tool, firstly and most importantly, for people and their healthcare. As 

such, physicians and healthcare systems will embrace, adapt, and evolve 

accordingly. It is becoming more and more apparent that AI will eventually 

create the pre- and post- AI era in medicine, too. 
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Figure Legends 

 

Figure 1. Deep neural network architecture. 

 

Figure 2. Single artificial neuron with three inputs and one output. 
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