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Abstract

The theory of chemical enumeration can be considered to have reached maturity with the works
by Balaban, and more specifically for the enumeration of alkane isomers, with the work of Pólya and
Read, the keypoints of which rely on the theory of generating function in relation with symmetry
properties. The present paper, after briefly recalling the history and the basis of these theories, aims at
indicating a new direction of research, which covers a new field of applications beyond the classical
results of chemical enumeration, making use of the recent developments of computer algebra. This
new direction aims at providingthe fundamentals in order to generate explicitly 3D configurations
of the stereo-isomers of alkane molecules and consider only some subclasses of the whole set of
alkanes which are encountered in most applications. This capability associated with the obtained
degree of symmetry of the generated stereo-isomers is of primary importance for applications in
thermochemistry and chemical kinetics.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. From graphs to molecules

A graph isthe application of a set on itself. However, the geometrical realization of
a graph is more appealing, namely a collection of points and of lines joining some of
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these points either to other points or to themselves. The name graph originates from this
geometrical realization and was introduced by Sylvester. Graphs are topological rather
than geometrical objects,having as the most important feature the vicinity relationships
between points. The correspondence between graphs and chemical categories has found
numerous applications in chemistry: a graph corresponds to a molecule, i.e., points
symbolize atoms and lines symbolize chemical bonds. Graphs gave Cayley the incentive
to develop a procedure for counting the constitutional isomers of alkanes (Pólya, 1937),
that is isomers without regard of the three-dimensional structure of the molecules. Later
it led Pólya toward the discovery of his powerful counting theorem, which can be applied
even to stereo-chemical problems, where the three-dimensional configurations are taken
into account. Thus graph theory, the beginning and development of which takes its origin
in chemistry, is well suited for solving chemical problems, both by the high degree of
abstraction of such concepts as points, lines, neighbors (Harary and Palmer, 1973), as well
as by the combinatorial derivation of graph-theoretical concepts which mimic the structure
of chemistry viewed as the study of combinations between atoms.

1.2. The basis of chemical enumeration

Graph theory was independently discovered on several occasions and three names
deserve special mention—Euler, Kirchhoff, and Cayley. Euler published the first known
paper on graph theory in 1736, in which he resolved the Königsberg bridge problem
(Biggs et al., 1986). Kirchhoff discovered graphs while solving problems involving the
calculation of currents in electrical networks. Organic chemistry became the third breeding
ground for graph theory. The best known early organic chemists, who founded the structure
theory, were Couper, Butlerov, and Kekulé. They found it convenient to represent a
covalent bound between two atoms as a line joining two points; thus every structural
formula is a graph. Chemists were then able to predict the number of isomers of alkanes
and alkanols of low molecular weights on the basis of simple graphical constructions. The
enumeration of the chemical isomers, in particular the constitutional isomers of alkanes
CnH2n+2, was a challenging mathematical problem to which, in 1874–5, Cayley applied
the graph concept of a tree put forward by him in 1857.

If only carbon atoms of alkanes are depicted, there is a one-to-one correspondence
between these isomers and trees whose points have at most degree 4. To solve the
problem of finding the number of such trees, Cayley altered the problem, enumerating
first the rooted trees (i.e., an alkane molecule with a labeled carbon atom) and then the
unrooted trees. He developed a solution for the initial problem which enabled him to count
constitutional isomers of alkanes. However, his results were only correct up to 11 carbon
atoms.

Between 1932 and 1934, Blair and Henze succeeded in enumerating all the
constitutional isomers of alkanes and alkyls, considering not only constitutional isomers, as
Cayley had done, but also stereo-isomers (Jaffe and Orchin, 1965). The methods developed
by these authors also yielded the isomer numbers for unsaturated hydrocarbons as well as
constitutional isomers of the main types of aliphatic compounds. They realized that it was
too optimistic to hope for a formula giving the numbers of isomers in a series as a function
of the number of carbon atoms, and so they concentrated instead on setting up recursion
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formulae. As we will see in the present paper, such an approach finds its justification in
recent years with the development of computer power and the associated computer algebra
tools.

1.3. Pólya’s contribution

Pólya’s Hauptsatz can be viewed as a wayof counting functions from a domain into a
range of equivalence determined by a particular permutation group acting on the domain. It
enables one to express the generating functions for a class of chemical compounds in terms
of an appropriate permutation group and another generating function called the figure-
counting series. Its generality and ease of application make this result a most powerful tool
in enumerative analysis.

Let A be a permutation group over a finite object setX , and for each permutationα in
A and each non-negative integerr , let jr(α) be the number of cycles ofr objects in the
disjoint cycle decomposition ofα. The cycle index of A is the polynomial in the variable
s1, s2, s3, . . . given by the following expression:

Z(A) = 1

|A|
∑

α∈A

∏

r

s jr (α)
r .

Pólya’s Hauptsatz enumerates classes of functions fromX , theobject set of the permutation
groupA, into another setY of elements called figures. Two such functionsf1 and f2 are in
the same class or areA-equivalent if there is a permutationα in A suchthat f1(αk) = f2(k)

for all objectsk in X . Often the figures inthe setY have integral weights assigned to them
and are also enumerated by a generating function called the figure-counting series, denoted
by c(x) = c0 + c1x + c2x2 + · · · , whichhas as coefficient ofxm thenumber of elements
in Y of weightm. In thiscase, we can define the weight of a function to be the sum of the
weights of the images of all domain elements. In general then, letw be any function from
Y into the set of non-negative integers. Any functionf from X into Y has as its weight∑

k∈X w( f (k)).

Pólya’s Hauptsatz (Pólya, 1937; Pólya and Read, 1987). The generating function
C(x) which enumerates equivalence classes of functions determined by the permutation
group A is obtained by substituting the figure-counting seriesc(x) in the cycle index
Z(A) as follows. Each variablesr in Z(A) is replaced byc(sr ). Symbolically we write:
C(x) = Z(A; c(x)).

1.4. Read’s contribution

The originality of Read was to combine inRead(1976) the power of Pólya’s theory
with a remarkable result ofHarary and Norman(1960) in order toenumerate the alkane
constitutional isomers and stereo-isomers.

The first preliminary result used by Read is the enumeration of alkanes in which one
carbon atom has been labeled. Since, in a first step, Read only considers constitutional
isomers, the radicals attached to the labeled carbon atom can be permuted by any
permutation ofS4. Pólya’s theorem is then applied with A(x) as the figure-counting series,
andS4 as the group. Since the cycle index of the group is1

24(s
4
1 +6s2

1s2+3s2
2+8s1s3+6s4)
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Fig. 1. ‘Bond-labeled’ molecules and radicals.

and since we have to multiply byx to accommodate the extra (labeled) carbon atom, our
configuration series takes the form

P(x) =
∞∑

n=1

Pn xn = x Z(S4; A(x))

= 1

24
x{A4(x) + 6A2(x)A(x2) + 3A2(x2) + 8A(x)A(x3) + 6A(x4)},

wherePn is thenumber of these compounds withn carbon atoms as a whole.
The second preliminary result required is the enumeration of alkanes in which one

carbon-to-carbon valence bond has been labeled, that is, distinguished from the other
bonds. This labeling does not correspond in any direct way to a feasible chemical
procedure, but is only a means to an end. As with the labeling of a carbon atom, this
labeling of a bond gives us a point to start from. If we ‘break’ the labeled bond in two, we
get two alkyles radicals as shown inFig. 1 (in which the labeled bond is indicated by the
asterisk).

Conversely, by joining two alkyl radicals, in any obvious way, we obtain an alkane in
which one carbon-to-carbon bond is distinguished from the rest by virtue of being the
common ‘free-bond’ of the two radicals. Hence the enumeration of these ‘bond-labeled’
molecules is a Pólya type problem. Pólya’s theorem then gives the configuration counting
series

Q(x) =
∞∑

n=1

Qn xn = Z(S2; A(x) − 1)

= 1

2
{(A(x) − 1)2 + A(x2) − 1}.

Let T be any tree. There will be certain one-to-one mappings of the vertex set ofT onto
itself which leave the tree invariant, i.e., adjacent vertices remain adjacent, etc. These
automorphisms form a group. If there is an automorphism which maps a vertexu onto a
vertexv, we saythatu andv are equivalent. This relation between vertices is an equivalence
relation, as its name suggests, and divides the vertex set ofT into equivalence classes. We
shall let p� denote the number of equivalence classes. Clearly any automorphism induces,
in an obvious way, a mapping of the set of edges ofT onto itself. If an edgee maps onto an
edge f under some automorphism ofT , we saye and f are equivalent, and in this way we
define equivalence classes of edges. Letq� be the number of equivalence classes. The result
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used by Read, proved by Harary and Norman, is thatp�−q�+s = 1 (Harary and Norman,
1960).

Here,s = 1 if the treehas a symmetric edge, ands = 0 otherwise. Asymmetric edge
must clearly have the same ‘half-tree’ at its two ends, and hence there can be at most one
suchedge in any tree. Let us sum the previous equation over all the alkanes having a given
numbern of carbon atoms. We haveΣ p� − Σq� + Σs = Σ1.

By what has just been said,Σ p� will be the total number of alkanes with a labeled
carbon atom;Σq� will be the number with a labeled bond;Σ1 will be the number of
alkanes—the number we are looking for. ThusΣ p� is thenumberPn given by theP(x)

formula andΣq� is thenumberQn given by the Q(x) formula. If we can determine the
numberΣs of alkanes with a symmetric bond, we shall know everything, and thus the
number we wish to find.

A molecule with a symmetric bond must have an even number of carbon atoms, and
as already remarked, the ‘half-trees’ at the end of the symmetric bond must be the same.
Hence, by splitting the symmetric bond Read gets two alkyl radicals for one half and has
determined the whole molecule. Hence the number of alkanes having a symmetric edge is
An/2. Denoting the required number of alkanes byCn , we havePn − Qn + An/2 = Cn .

If we now multiply it byxn, sumfrom n = 1 upward, and rearrange, we have

C(x) =
∞∑

n=1

Cn xn = P(x) − Q(x) + A(x2) − 1.

Since P(x), Q(x) and A(x) are known we can calculate the seriesC(x) and thus
determine the number of alkanes. If we writeA1(x) for A(x) − 1, we obtainC(x) =
P(x) − 1

2{A2
1(x) − A1(x2}).

To enumerate the alkanes, having a regard to stereo-isomers, Read first uses alkanes
with a labeled carbon atom. It is readily verified that wecan permute by any element of the
alternating groupA4, whose cycle index is1

12(s
4
1 + 3s2

2 + 8s1s3).
Applying Pólya’s theorem, witha(x) as the figure-counting series, we obtain

p(x) =
∞∑

n=1

1

12
x{a4(x) + 3a2(x2) + 8a(x)a(x3)}.

The counting series for alkanes in which a carbon–carbon bond has been labeled is
q(x) = Z(S2; a(x) − 1) = 1

2

{
[a(x) − 1]2 + a(x2) − 1

}
.

Read finally uses the theorem to the effect thatp� − q� + s = 1, and obtains the result
c(x) = p(x) − q(x) + a(x2) − 1, where

c(x) =
∞∑

n=1

cn xn

andcn is the number of stereo-isomers with the formula CnH2n+2.

1.5. Isomers enumeration: from counting series to exhaustive generation

The theory of chemical enumeration can beconsidered to have reached maturity with
the works by Balaban(1976, 1987, 1993), and more specifically for the enumeration of
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alkane stereo-isomers, with the work ofRead(1972, 1976), the key points of which have
been recalled in the previous subsections. The present paper aims at indicating a new
direction of research, making use of the recent developments of computer algebra (McKay,
1981; Chaunier and Lyger̄os, 1992, 1994; Lyger̄os and Mizony, 1996), which covers a
new field of applications beyond the classical results of chemical enumeration. This new
direction aims at providing the basis in order to generate explicitly 3D configurations of
the stereo-isomers of alkane molecules andconsider only some subclasses of the whole set
of alkanes.

Let us first explain what is meant by a subclass of the whole set of alkanes and why it
can be interesting to consider such a subset. In many practical applications ranging from
chemical engineering, thermodynamics, up to combustion problems such asMassot et al.
(1998); Laurent and Massot(2001), the hydrocarbons under consideration only contain a
few carbon atoms. More specifically, the branching complexity of the considered alkanes
usually remains very limited. As a consequence, we restrict ourselves, in this paper, to
alkanes being constituted of a main chain, on which only methyl (CH3, i.e., a chain of one
carbon atom) and ethyl (C2H5, i.e., a chain of two carbon atoms) radicals can be connected;
this condition was introduced by Baltanas andwill be denoted in the following Baltanas’
condition. In the present study, we perform the calculations up to 23 carbons. After having
noticed thatthis subset will rapidly converge to zero density in the set of all alkanes and
characterized the represented percentageas a function of the number of carbon atoms, we
still remark that this subset is going to represent the overwhelming majority of molecules
considered in practical problems. It is then interesting from a mathematical point of view to
perform the enumeration of stereo-isomers for this particular subset of alkane molecules,
for which the classical tools of counting series will not apply.

Second, the principle of chemical enumeration presented inBalaban(1976) is based
on counting series, and thus only delivers stereo-isomer numbers, whereas the geometrical
background of the molecules has been included at some point in terms of a permutation
subgroup (Pólya and Read, 1987). The purpose of the present study is to perform a
chemical enumeration study yielding not only the stereo-isomer numbers, in a global
perspective, but also the various three-dimensional configurations with their associated
degree of symmetry. This information will be essential in order to evaluate chemical or
physical mixture properties based on the spatial structure of the various configurations of
the molecule.

The paper is organized as follows. We introduce, inSection 2, an octahedral network
paving the three-dimensional space and present the coding dedicated to the subclass of the
alkane molecules we have introduced and the associated weight.Section 3is devoted to
the exhaustive enumeration itself and some of the corresponding results are presented. We
come to a conclusion inSection 4.

2. Strategy and coding

2.1. Octahedral network in 3D space

The approach used by Read revealed itself as a breakthrough in the field; however,
it is implicit and holistic in the sense that it only yields one global numerical piece of
information. Our approach is explicit and granular; it is thus fundamentally different from



N. Lygeros et al. / Journal of Symbolic Computation 40 (2005) 1225–1241 1231

Fig. 2. Two non-isomorphic configurations of C10H22.

the preceding one and is rendered possible by the recent developments of the power of
computer algebra.

The base of our strategy is to embed the alkane molecules in a centered network of
non-regular octahedra paving the three-dimensional Euclidian space. This network allows
an easy coding of the molecule as well as an effective isomorphism test through rotations
associated with the network. More explicitly, we first of all generate constitutional isomers
and classify them in families according to their topological properties; each family is
then partitioned into subfamilies based on the associated automorphism group. Finally,
we rigidify the obtained structures, place them in the centered network of non-regular
octahedra and generate the whole set of stereo-isomers thanks to the exhaustive study of
chirality.

2.2. Fundamentals of the coding—constitutional isomers

The selected coding consists of encased lists. This type of object allows a fast access to
the data with Maple 7.00, Waterloo Maple Inc. The coding will have only three operands
on the first level:

t , size of theprincipal chain (the number of vertices);
[m1, m2 . . . , m p], thelist of theranks of the connected methyls;
[e1, e2 . . . , eq ], thelist of the ranks of the connected ethyls.

Fig. 2 shows two examples of coding. The flexibility of this code and its effectiveness
are due to the fact that only two types of connections are considered. An extension to other
to a richer set of alkyl radicals is possible but coding becomes increasingly heavy for a
diversity of the “lateral branches”.

2.3. The weight of a coding—constitutional isomers

A significant question, leading to an orientation in the programming, was to know how
to avoid generating too great a number of molecules. Indeed, as we want to enumerate non-
isomorphic configurations, the two graphs ofFig. 3, for example, will have to be regarded
as two representations of the same molecule. A way of avoiding the generation of these two
configurations is to introduce aweight function. The weight of a coding will be defined by
the function
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Fig. 3. Two isomorphic configurations with different weights.

f : [t, [m1, m2, . . . , m p], [e1, e2, . . . , eq ]] →
p∑

i=1

mi + 2
q∑

j=1

e j .

This function calculates a certain barycenter on the connections (a weight of 1 is allocated
to methyls and a weight of 2 to ethyls). The program begins and “sets” the connections
on the left of the chain; those are then moved gradually and the process stops when the
“barycenter” exceeds half of the chain. In this way, it avoids counting twice identical
molecules according to whether one reads them starting from the right-hand side or from
the left-hand side.

The use of ‘topological indices’-like tools will not be pushed further for three reasons.
First, for our subclass, we have a very efficient way of generating the set of constitutional
isomers, second, the use of the BalabanJ index or Kier and Hall’s total topological state
is limited in terms of the number of carbon atoms for our purposes (Randić et al., 2000),
and finally this kind of approach has not yet been extended to chiral molecules.

2.4. The 3D coding—stereo-isomers

The centered network of non-regular octahedra is naturally interpreted as Voronoi cells
of the carbon atoms constituting two entangled, similar and shifted alkane molecules
occupying the whole space. Subsequently, we consider the equivalence class up to discrete
carbon–carbon rotations; this equivalence class is supported by the network. A natural
representative of this class, because of the Baltanas condition, is obtained by choosing a
molecule, the longest chain of which lies in a plane, and by locating the position of the
possible branches by “U” for up and “D” for down with respect to this plane. Thus the
spatial configuration of the molecule is coded in a canonical way (andFig. 4 shows two
examples of the coding):

t , size of theprincipal chain (number of vertices);
[m1, m2 . . . , m p], list of ranksof the connected methyl radicals;
[εm

1 , εm
2 , . . . , εm

p ], list of position of methyl radicals, whereεm
i belongs to the set{U, D}.

It is chosen according to whether thei -th methyl branch is above the plane of the
principal chain or below.
[e1, e2 . . . , eq ], list of ranksof the connected ethyl radicals.
[εe

1, ε
e
2, . . . , εe

q ], list of position of ethyl radicals, whereεe
i ∈ {U, D}.
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Fig. 4. Examples of 3D codings.

Fig. 5. Molecules with 10 vertices which do not satisfy Baltanas’ condition.

3. Enumeration results

3.1. Constitutional isomers

In the tables below, we compare the results obtained by Read, making use of generating
functions, with the effective computer algebra method proposed in the present paper under
Baltanas’ condition. The details of the evaluation of suchnumbers will be presented below;
we first give the final result for comparison purposes.

Baltanas’ condition is not restrictive forn ≤ 9, in such a way that Read’s isomer
numbers provide an independent certificate in this range of elements. The first graphs
with 10 and 11 elements, which we do notenumerate because of Baltanas’ condition,
are represented inFigs. 5and7.

The trees satisfying Baltanas’ condition asymptotically represent only a family of zero
density as the whole of the quaternary trees which represent exactly the alkane molecules.
Table 1provides the behavior of the number of alkanes satisfying Baltanas’ condition with
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Table 1
Number of constitutional isomers and comparison

n Generating functions Computer algebra Percentile

under Baltanas’ condition (%)
1 1 1 100.00
2 1 1 100.00
3 1 1 100.00
4 2 2 100.00
5 3 3 100.00
6 5 5 100.00
7 9 9 100.00
8 18 18 100.00
9 35 35 100.00
10 75 71 94.67
11 159 143 89.94
12 355 295 83.10
13 802 606 75.56
14 1858 1261 67.87
15 4347 2616 60.18
16 10359 5461 52.72
17 24894 11385 45.73
18 60523 23806 39.33
19 148284 49748 33.55
20 366319 104109 28.42
21 910726 217808 23.92
22 2278658 455993 20.01
23 5731580 954512 16.65

respect to the alkane number as a function of the number of carbon atomsn. It is shown
to decrease exponentially at infinity and very rapidly even for low values ofn as shown in
Fig. 6 for both constitutional isomers and stereo-isomers. However, the alkane molecules
satisfying Baltanas’ condition represent the great majority of the alkane molecules one
usually encounters in most chemical applications.

In order to enumerate the considered subclass of alkane molecules, we introduce a
granular approach; it consists in a partition of the graphs according to the number and
of the type of branches.

The following table provides a typical example of a class in the partition we have
performed among the considered alkane molecules in terms of their automorphism group.
It highlights the recursive formulae that can be deduced from the various tables. In the
following, p represents the number of methyl radicals andq the number of ethyl ones,
in agreement with the notations used for coding. InFig. 8, we give a few examples of
molecules withn = 11, 12 and 13 having as automorphism groupsS2×S3, (S2)

4 and(S3)
2.

Starting fromTable 2, one can easily build up recursive formulae for a given topology
(for examplep = 2 andq = 2 such as inTable 2) and automorphism group (a given
column inTable 2). One can wonder whether or not these formulae make it possible to
calculate the number of isomers for alkanes.Fig. 9 shows that new families of graphs
appear as the number of vertices increases. This phenomenon suggests the difficulty of
tackling the enumeration with a global approach.
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Fig. 6. Percentage of alkane molecules under Baltanas’ condition (dashed line: constitutional isomers, solid line:
stereo-isomers).

Table 2
Distribution of isomers according to the automorphism group. The lateral branches are
composed of 2 methyls and 2 ethyls

p = 2

q = 2
Automorphism group

n S1 S2 (S2)2 S3 (S2)3 S2 × S3 (S2)4 (S3)2 Sum

11 0 0 0 0 0 0 1 1 2
12 0 0 3 0 3 4 0 1 11
13 0 6 15 2 3 8 2 1 37
14 2 30 32 6 7 12 0 1 90
15 14 74 62 12 7 16 2 1 188
16 42 158 93 20 11 20 0 1 345
17 102 276 141 30 11 24 2 1 587
18 204 456 186 42 15 28 0 1 932
19 372 684 252 56 15 32 2 1 1414
20 620 996 311 72 19 36 0 1 2055
21 980 1370 395 90 19 40 2 1 2897
22 1470 1850 468 110 23 44 0 1 3966
23 2130 2406 570 132 23 48 2 1 5312
24 2982 3090 657 156 27 52 0 1 6965
25 4074 3864 777 182 27 56 2 1 8983

3.2. Stereo-isomers

Once the constitutional isomers have been enumerated and characterized, the obtained
structures are now embedded in the octahedral network. Only the positions of the side
branches are studied, as explained before, and the results are presented inTable 3, and
compared with Read’s stereo-isomer numbers.
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Fig. 7. Molecules with 11 vertices which do not satisfy Baltanas’ condition.

As already mentioned for the evaluation of the constitutional isomer numbers, the
partition by automorphism group provides simple recurrence formulae for the enumeration
of stereo-isomers. The following table is related to the same family as in the example of
the previous subsection.

In Fig. 10, as an example, we have represented the 6 stereo-isomers corresponding to
n = 12 that haveS2 × S3 as automorphism group. For the sake of legibility, we have only
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Fig. 8. Examples of molecules havingS2 × S3, (S2)
4 and(S3)

2 as automorphism groups.

presented a few casesp = 2 andq = 2 for stereo-isomers inTable 4, and(p = 4, q = 0)

for theconstitutional isomers inTable 6.
As far as the computational cost is concerned, the present result have been obtained on

a single Pentium III, 1 GHz computer and it took a little more than 8 hin order to obtain
the number of constitutional and stereo-isomers forn = 23. The computational cost is
presented in detail inTable 5. However,our approach can be first extended to a C program
and used on a parallel cluster of more recent PC’s or even distributed on various computers.
It can then go far beyondn = 23,a value we have chosen for illustration and comparison
purposes.

4. Conclusion

Our effective approach to the problem of the isomorphic enumeration of stereo-isomers
is basically different from Polya’s methodand Read’s method because it is based on an
exhaustive generation of the geometric structure as well as optical activity and degree of
symmetry of the alkanes and not simply the global number of stereo-isomers.

In our approach, the geometrical structure, which can be interpreted for an alkane
molecule as an embedding into a centered network of non-regular octahedra paving the
3D space, does not only result in the definition of formal series and finally in a way of
calculating the global number of stereo-isomers as in Read, but all the non-isomorphic
stereo-isomers are generated with their degree of symmetry.
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Table 3
Number of stereo-isomers and comparison

n Generating functions Computer algebra Percentile

under Baltanas’ condition (%)
1 1 1 100.0
2 1 1 100.0
3 1 1 100.0
4 2 2 100.0
5 3 3 100.0
6 5 5 100.0
7 11 11 100.0
8 24 24 100.0
9 55 55 100.0
10 136 132 97.1
11 345 321 93.0
12 900 782 86.9
13 2412 1916 79.4
14 6563 4705 71.7
15 18127 11567 63.8
16 50699 28468 56.2
17 143255 70108 48.9
18 408429 172721 42.3
19 1173770 425631 36.3
20 3396844 1049038 30.9
21 9892302 2585793 26.1
22 28972080 6374186 22.0
23 85289390 15713531 18.4

Table 4
Distribution of stereo-isomers according to the automorphism group. The lateral branches are
composed of 2 methyls and 2 ethyls

p = 2

q = 2
Automorphism groups

n S1 S2 (S2)2 S3 (S2)3 S2 × S3 (S2)4 (S3)2 Sum

11 0 0 0 0 0 0 1 1 2
12 0 0 6 0 5 6 0 1 18
13 0 26 36 8 5 12 2 1 90
14 16 153 77 24 13 18 0 1 302
15 140 403 155 48 13 24 2 1 786
16 456 902 232 80 21 30 0 1 1722
17 1184 1616 358 120 21 36 2 1 3338
18 2472 2727 471 168 29 42 0 1 5910
19 4668 4145 645 224 29 48 2 1 9762
20 7984 6108 794 288 37 54 0 1 15266
21 12896 8470 1016 360 37 60 2 1 22842
22 19680 11525 1201 440 45 66 0 1 32958
23 28940 15071 1471 528 45 72 2 1 46130
24 41016 19458 1692 624 53 78 0 1 62922
25 56640 24428 2010 728 53 84 2 1 83946



N. Lygeros et al. / Journal of Symbolic Computation 40 (2005) 1225–1241 1239

Fig. 9. Graph families as a function of the number of vertices.

Fig. 10. 6 stereo-isomers of C12H26, 2 methyls and 2 ethyls, automorphism groupS2 × S3.

Besides, this exhaustive approach can be adapted to specific graph subfamilies of alkane
molecules which are mostly encountered in practical applications. It is worth noting that the
enumeration of stereo-isomers of such subfamilies with the holistic approach of generating
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Table 5
CPU time in minutes for the generation of the structural isomers as a function ofn on a Pentium III,
1 GHz computer

n 11 12 13 14 15 16 17 18 19 20 21 22 23
t 0.0 0.0 0.0 0.0 0.1 0.2 0.4 1.0 2.6 7.3 23.1 99.5 511.0

Table 6
Distribution of isomers according to the automorphism group. The lateral branches are composed of
4 methyl radicals and no ethyl radical

p = 4
q = 0

Automorphism group

n S1 S2 (S2)2 S3 (S2)3 S2 × S3 (S2)
4 S2 × (S3)2 Sum

8 0 0 0 0 0 0 0 1 1
9 0 0 0 0 0 2 1 1 4
10 0 0 2 1 3 4 0 1 11
11 0 2 9 3 3 6 1 1 25
12 0 11 16 6 6 8 0 1 48
13 2 25 30 10 6 10 1 1 85
14 6 53 42 15 9 12 0 1 138
15 16 89 63 21 9 14 1 1 214
16 32 146 80 28 12 16 0 1 315
17 60 214 108 36 12 18 1 1 450
18 100 310 130 45 15 20 0 1 621
19 160 420 165 55 15 22 1 1 839
20 240 565 192 66 18 24 0 1 1106
21 350 727 234 78 18 26 1 1 1435
22 490 931 266 91 21 28 0 1 1828
23 672 1155 315 105 21 30 1 1 2300
24 896 1428 352 120 24 32 0 1 2853
25 1176 1724 408 136 24 34 1 1 3504

functions is out of reach. Moreover, this new approach provides an important new feature:
it becomes possible to use a combinatorial approach to characterize the three-dimensional
geometry and number of the various isomers, and thus to deduce some physical or chemical
properties of their mixtures. It opens new perspectives in the field of organic and statistical
chemistry since it is intrinsically adequate for problems in which the spatial configurations
of the various molecules have a key role in the global properties of the mixture.
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