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PREFACE

In the late 1940's John von Neumann began to develop a theory

of automata. He envisaged a systematic theory which would be

mathematical and logical in form and which would contribute in an

essential way to our understanding of natural systems (natural auto-

mata) as well as to our understanding of both analog and digital

computers (artificial automata).

To this end von Neumann produced five works, in the following

order:

(1) "The General and Logical Theory of Automata." Read at the

Hixon Symposium in September, 1948; published in 1951. Col-

lected Works 5.288-328. 1

(2) "Theory and Organization of Complicated Automata." Five

lectures delivered at the University of Illinois in December,

1949. This is Part I of the present volume.

(3) "Probabilistic Logics and the Synthesis of Reliable Organisms

from Unreliable Components." Lectures given at the California

Institute of Technology in January, 1952. Collected Works 5.329-

378.

(4) "The Theory of Automata: Construction, Reproduction, Ho-

mogeneity." Von Neumann started this manuscript in the fall

of 1952 and continued working on it for about a year. This is

Part II of the present volume.

(5) The Computer and the Brain. Written during 1955 and 1956;

published in 1958.

The second and fourth of these were left at his death in a manuscript

form which required extensive editing. As edited they constitute the

two parts of the present volume, which thus concludes von Neu-

mann's work on the theory of automata.

As a background for this editorial work I made a study of all of

von Neumann's contributions on computers, including the theory of

automata. I have summarized his contributions in the "Introduction"

to the present volume.

Von Neumann was especially interested in complicated automata,

such as the human nervous system and the tremendously large com-

1 Complete references are given in the bibliography. "Collected Works 5.288-

328" refers to pp. 288-328 of Vol. V of von Neumann's Collected Works.

xv
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puters he foresaw for the future. He wanted a theory of the logical

organization of complicated systems of computing elements and be-

lieved that such a theory was an essential prerequisite to constructing

very large computers. The two problems in automata theory that

von Neumann concentrated on are both intimately related to com-

plexity. These are the problems of reliability and self-reproduction.

The reliability of components limits the complexity of the automata

we can build, and self-reproduction requires an automaton of con-

siderable complexity.

Von Neumann discussed reliability at length in his "Probabilistic

Logics and the Synthesis of Reliable Organisms from Unreliable

Components. " His work on self-reproducing automata is found chiefly

in the present volume. Part II, which constitutes the bulk of the

present volume, treats the logical design of a self-reproducing cellular

automaton. Though the shorter Part I is devoted to complicated

automata in general, its high point is the kinematic model of self-

reproduction (Fifth Lecture). It therefore seemed appropriate to use

the title "Theory of Self-Reproducing Automata" for the whole

work.

It is unfortunate that, because of his premature death, von Neu-

mann was unable to put in final form any of the research he was

doing in automata theory. The manuscripts for both parts of the

present volume were unfinished; indeed, they were both, in a sense,

first drafts. There is one compensation in this: one can see von Neu-

mann's powerful mind at work. Early drafts by a thinker of von

Neumann's ability are not often available. For this reason, I have

tried hard to preserve the original flavor of von Neumann's manu-

scripts, while yet rendering them easily readable. So that the reader

will know what the raw manuscripts are like, I will describe them

and the editorial changes I have made in them.

Von Neumann agreed to write a book on automata theory in con-

nection with his five lectures at the University of Illinois in Decem-

ber, 1949. A tape recording of the lectures was made to aid him in

writing the book. Unfortunately, the recording and the typescript of

it turned out badly, with gaps in the text, unintelligible passages, and

missing words. Von Neumann himself never edited this typescript,

but instead planned to use the manuscript "The Theory of Auto-

mata: Construction, Reproduction, Homogeneity" for the promised

book. The recording itself is not extant. Despite these circumstances,

the Illinois lectures deserve publication, and the recorded version,

highly edited of necessity, constitutes Part I of this volume.

Von Neumann prepared a detailed outline of the lectures in advance



PREFACE xvii

of delivery, and the content of the lectures corresponded roughly to

this outline. The outline bore the title "Theory and Organization of

Complicated Automata/' and began with the following three lines:

The logical organization and limitations of high-speed digital

computers.

Comparison of these and other complicated automata, both

artificial and natural.

Inference from the comparison of the nervous systems

found in nature.

There followed the title of each lecture and a list of topics to be cov-

ered in that lecture; these are reproduced verbatim at the beginning

of each lecture below, even though the lecture materials do not cor-

respond exactly to the list of topics.

Because of the state of the manuscript it has been necessary to do

much editing. The typescript of the recording is especially poor in the

more formal portions of the lectures, where von Neumann used the

blackboard. For these portions, particularly, I have found two sets

of notes taken at the lectures to be helpful. I have preserved von

Neumann's phraseology where feasible, but I have frequently found

it necessary to use my own words. I have sometimes felt it best to

summarize what von Neumann was saying rather than to attempt

to reconstruct the text. Several of the points von Neumann made in

the Illinois lectures also appear in his published writings, or are well

known, and in these cases I have often summarized what von Neu-

mann said or given references to his published works.

Where the writing is strictly my own, it appears in brackets. The
reconstructed edition of von Neumann's words is not bracketed, but

it should be kept in mind that much of this unbracketed text is heavily

edited.

The manuscript "The Theory of Automata: Construction, Repro-

duction, Homogeneity" was in a much better state. It seems to have

been a first draft, with the exception that there is an earlier outline

(with figures) of the procedure whereby the memory control MC
lengthens and shortens the connecting loop Ci and the timing loop

C2 under the direction of the constructing unit CU (cf. Sees. 4.1 and

4.2). Despite its being a first draft, the manuscript was publishable

as it stood except for deficiencies of the following three types.

(1) First, the manuscript lacked many of those simple mecha-

nisms which make for easy reading. There were no figure titles. For-

mulas, sections, and figures were referred to by number only, without

explicit indication as to whether the item referred to is a formula,

section, or figure. Section titles were listed on a separate sheet. Also
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on a separate sheet, von Neumann gave only brief indications for the

footnotes he planned. Organs were referred to by letter alone. For

example, von Neumann merely used "A" and "B" to refer to the

organs I have called the "constructing unit CU" and the "memory
control MC," respectively. I have worked through the manuscript

several times and each time I have been amazed at how von Neumann
could keep track of what he was doing with so few mnemonic devices.

In editing the manuscript I have endeavored to supply these de-

vices. For example, where von Neumann wrote "CO" I often put

"control organ CO." I have added titles to the figures and completed

the footnote references. Von Neumann wrote some explanatory re-

marks on the figures; these have been moved to the text. Similar

and related changes have been made, all without any indication in

the text.

In addition, I have inserted footnotes, commentaries, explanations,

and summaries at various places in the text, and have added a con-

including chapter (Ch. 5). All such additions are in brackets. Von
Neumann's brackets have been changed to braces, except for his

usage "[0]" and "[1]" to refer to ordinary and special symbols. In

connection with my bracketed additions, I have added Tables I and

V and many figures. Figures 1-8, 16, 18, 19, 22, 24, 28-36, 38, 39,

and 41 are von Neumann's; the remaining figures are mine.

(2) Second, the manuscript "Theory of Automata: Construction,

Reproduction, Homogeneity" contained many errors. These range

from minor slips (which I have corrected without any specific indica-

tion), through errors of medium significance (which I have corrected

or commented on in bracketed passages), to major errors requiring

considerable redesign (which I have discussed in Sections 5.1.1 and

5.1.2). All of these errors are correctable, but because organs designed

in the earlier parts of the manuscript are used in later parts, many of

these errors propagate and "amplify." In this connection, it should

be kept in mind that the manuscript was an early draft, and that

von Neumann was working out the design as he proceeded, leaving

many design parameters for later specification.

(3) Third, the manuscript "Theory of Automata: Construction,

Reproduction, Homogeneity" is incomplete. The construction stops

before the tape unit is quite finished. In Chapter 5 I show how to

complete the design of von Neumann's self-reproducing automaton.

The technical development of the manuscript is extremely com-

plicated and involved. The deficiencies just mentioned add to its

difficulty. In some respects it would have been editorially easier not

to edit the manuscript after Chapter 2 and instead work out the



PREFACE xix

design of von Neumann's self-reproducing automaton along the lines

he last envisaged. But this was not a real alternative because of the

historical importance of the manuscript, and the opportunity it gives

to observe a powerful mind at work. I have therefore endeavored to

make corrections and add comments so as to preserve the original

style of the manuscript while making it relatively easy to read.

I am indebted to a number of people for their assistance. The late

Mrs. Klara von Neumann-Eckardt gave me information about her

husband's manuscripts. Several people who worked with von Neu-

mann on computers gave me firsthand information: Abraham Taub,

Herman Goldstine, the late Adele Goldstine, and especially Julian

Bigelow and Stan Ulam; von Neumann often discussed his work on

automata theory with Bigelow and with Ulam. John Kemeny, Pierce

Ketchum, E. F. Moore, and Claude Shannon heard lectures by or

had discussions with von Neumann on automata theory. Kurt GodePs

letter at the end of the Second Lecture of Part I is reproduced with

his kind permission. Thanks go to many of my graduate students

and research associates for technical assistance, particularly Michael

Faiman, John Hanne, James Thatcher, Stephen Hedetniemi, Frederick

Suppe, and Richard Laing. Alice Finney, Karen Brandt, Ann Jacobs,

and Alice R. Burks have provided editorial assistance. M. Elizabeth

Brandt drew the figures. My editorial work was supported by the

National Science Foundation. None of these share any responsibility

for the editing.

Arthur W. Burks
Ann Arbor, 1965





EDITOR'S INTRODUCTION

Von Neumann's Work on Computers

John von Neumann was born on December 28, 1903 in Budapest,

Hungary, and died in Washington, D.C., February 8, 1957. 1 He
earned a doctorate in mathematics from the University of Budapest

and an undergraduate chemistry degree from the Eidgenossische

Technische Hochschule in Zurich, Switzerland. He became a Privat-

docent at the University of Berlin in 1927 and a Privatdocent at the

University of Hamburg in 1929. In 1930 he came to the United States

as a visiting lecturer at Princeton University, where he was made full

professor in 1931. In 1933 he joined the newly formed Institute for

Advanced Study as a professor and retained that post for the rest of

his life.
2

In later life, while retaining his theoretical interests and produc-

tivity, von Neumann developed strong interests in the applications

of mathematics. During the Second World War he became heavily

involved in scientific research on problems of defense. He played a

major role in the development of the atomic bomb, contributing

particularly to the method of implosion. He was a consultant to

many government laboratories and organizations and a member of

many important scientific advisory committees. After the war he

continued these consulting and advisory activities. Altogether he

was involved in such diverse fields as ordnance, submarine warfare,

bombing objectives, nuclear weapons (including the hydrogen bomb),

military strategy, weather prediction, intercontinental ballistic mis-

siles, high-speed electronic digital computers, and computing methods.

In October, 1954, the President of the United States appointed him

to the United States Atomic Energy Commission, a position he held

at the time of his death. He received many awards and honors during

his lifetime, including membership in the National Academy of Sci-

ences, two Presidential Awards, and the Enrico Fermi Award of the

Atomic Energy Commission. The latter was given especially for his

1 See Ulam, "John von Neumann," and Mrs. von Neumann's preface to The
Computer and the Brain.

2 See his Collected Works, edited by A. Taub. An excellent summary of von
Neumann's accomplishments is presented in the Bulletin of the American
Mathematical Society, Vol. 64, No. 3, Part 2, May, 1958.

1
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contributions to the development of electronic computers and their

uses.

Von Neumann the Mathematician. During the last years of his life

John von Neumann devoted considerable effort to developing a

theory of automata. The present volume, edited from two unfinished

manuscripts, is his last work on this subject. Because of his premature

death he was unable to finish a volume which would present a com-

plete picture of what he wished to accomplish. It is therefore appro-

priate to summarize here the main features of his projected theory

of automata. Since his conception of automata theory arose out of

his work in mathematics and computers, we will begin by describing

that work.

Von Neumann was a very great mathematician. He made many
important contributions in a wide range of fields. Von Neumann
himself thought his most important mathematical achievements

,

were in three areas: the mathematical foundations of quantum theory,

the theory of operators, and ergodic theory. His contributions in other

areas bear more directly on his computer work. In the late 1920 ,

s he

wrote on symbolic logic, set theory, axiomatics, and proof theory.

In the middle thirties he worked on lattice theory, continuous ge-

ometry, and Boolean algebra. In a famous paper of 1928 and in a

book of 19443 he founded the modern mathematical theory of games.

Starting in the late thirties and continuing through and after the

war he did much research in fluid dynamics, dynamics, problems in

the mechanics of continua arising out of nuclear technology, and

meteorology. During the war he became involved in computing

and computers, and after the war this became his main interest.

Von Neumann and Computing. Von Neumann was led into com-

puting by his studies in fluid dynamics. Hydrodynamical phenomena

are treated mathematically by means of non-linear partial differential

equations. Von Neumann became especially interested in hydro-

dynamical turbulence and the interaction of shock waves. He soon

found that existing analytical methods were inadequate for obtaining

even qualitative information about the solutions of non-linear partial

differential equations in fluid dynamics. Moreover, this was so of

non-linear partial differential equations generally.

Von Neumann's response to this situation was to do computing. 4

During the war he found computing necessary to obtain answers to

3 "Zur Theorie der Gesellschaftsspiel." Theory of Games and Economic Be-
havior, with Oskar Morgenstern.

4 See Ulam, "John von Neumann," pp. 7-8, 28 ff., and Birkhoff, Hydrody-
namics, pp. 5, 25.
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problems in other fields, including nuclear technology. Hence, when
the new high-speed electronic digital general-purpose computers were

developed during and after the war, he was quick to recognize their

potentialities for hydrodynamics as well as other fields. In this con-

nection he developed a general method for using computers which is

of very great importance because it is applicable to a wide variety

of problems in pure and applied mathematics.

The procedure which he pioneered and promoted is to employ

computers to solve crucial cases numerically and to use the results

as a heuristic guide to theorizing. Von Neumann believed experi-

mentation and computing to have shown that there are physical

and mathematical regularities in the phenomena of fluid dynamics

and important statistical properties of families of solutions of the

non-linear partial differential equations involved. These regularities

and general properties could constitute the basis of a new theory of

fluid dynamics and of the corresponding non-linear equations. Von
Neumann believed that one could discover these regularities and

general properties by solving many specific equations and generaliz-

ing the results. From the special cases one would gain a feeling for

such phenomena as turbulence and shock waves, and with this quali-

tative orientation could pick out further critical cases to solve nu-

merically, eventually developing a satisfactory theory. See the First

Lecture of Part I of this volume.

This particular method of using computers is so important and has

so much in common with other, seemingly quite different, uses of

computers that it deserves extended discussion. It is of the essence

of this procedure that computer solutions are not sought for their

own sake, but as an aid to discovering useful concepts, broad prin-

ciples, and general theories. It is thus appropriate to refer to this as

the heuristic use of computers. 5

The heuristic use of computers is similar to and may be combined

with the traditional hypothetical-deductive-experimental method of

science. In that method one makes an hypothesis on the basis of the

available information, derives consequences from it by means of

mathematics, tests the consequences experimentally, and forms a

new hypothesis on the basis of the findings; this sequence is iterated

indefinitely. In using a computer heuristically one proceeds in the

same way, with computation replacing or augmenting experimenta-

tion. One makes an hypothesis about the equations under investiga-

5 See also Ulam, A Collection of Mathematical Problems, Ch. 8,
' 'Computing

Machines as a Heuristic Aid."
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tion, attempts to pick out some crucial special cases, uses a computer

to solve these cases, checks the hypothesis against the results, forms

a new hypothesis, and iterates the cycle.

The computations may also be compared with experimental data.

When this is done the heuristic use of computers becomes simulation.

Computation in itself can only provide answers to purely mathe-

matical questions, so when no comparison is made with empirical

fact the heuristic use of computers contributes to pure mathematics.

Von Neumann thought that the main difficulties in fluid dynamics

stemmed from inadequate mathematical knowledge of non-linear

partial differential equations, and that the heuristic use of computers

would help mathematicians to construct an adequate and useful

theory for this subject. He pointed out that while much progress

had been made by means of wind tunnels, since the equations govern-

ing the phenomena were known, these wind tunnels were being used

as analog computers rather than as experimental apparatus.

. . . many branches of both pure and applied mathematics are in great need

of computing instruments to break the present stalemate created by the

failure of the purely analytical approach to non-linear problems. . . . really

efficient high-speed computing devices may, in the field of non-linear partial

differential equations as well as in many other fields, which are now difficult

or entirely denied access, provide us with those heuristic hints which are

needed in all parts of mathematics for genuine progress. 6

Von Neumann's suggestion that powerful computers may provide

the mathematician "with those heuristic hints which are needed in

all parts of mathematics for genuine progress" is connected to his

strong conviction that pure mathematics depends heavily on empirical

science for its ideas and problems. . . the best inspirations of mod-

ern mathematics . . . originated in the natural sciences.
,, 7 He recog-

nized that mathematics is not an empirical science and held that the

mathematician's criteria of selection of problems and of success are

mainly aesthetical.

I think that it is a relatively good approximation to truth—which is

much too complicated to allow anything but approximations—that mathe-

matical ideas originate in empirics, although the genealogy is sometimes long

and obscure. But once they are so conceived, the subject begins to live a

peculiar life of its own and is better compared to a creative one, governed by
almost entirely aesthetical motivations, than to anything else and, in par-

6 Von Neumann and Goldstine, "On the Principles of Large Scale Comput-
ing Machines," Collected Works 5.4.

7 "The Mathematician," Collected Works 1.2. The next quotation is from
the same article, 1.9.
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ticular, to an empirical science. There is, however, a further point which, I

believe, needs stressing. ... at a great distance from its empirical source, or

after much "abstract" inbreeding, a mathematical subject is in danger of

degeneration. . . . whenever this stage is reached, the only remedy seems to

me to be the rejuvenating return to the source: the reinjection of more or

less directly empirical ideas.

The role that empirical science plays in pure mathematics is a

heuristic one: empirical science supplies problems to investigate and

suggests concepts and principles for their solution. While von Neu-

mann never said so, I think it likely that he thought the computations

produced by the heuristic use of computers can play the same role

in some areas of mathematics. In the First Lecture of Part I below

he said that powerful methods in pure mathematics depend for their

success on the mathematicians having an intuitive and heuristic

understanding of them, and suggested that one can build this in-

tuitive familiarity with non-linear differential equations by using

computers heuristically. 8

It should be noted that in the heuristic use of computers the hu-

man, not the machine, is the main source of suggestions, hypotheses,

heuristic hints, and new ideas. Von Neumann wished to make the

machine as intelligent as possible, but he recognized that human
powers of intuition, spatial imagery, originality, etc., are far superior

to those of present or immediately foreseeable machines. He wished to

augment the ability of a skilled, informed, creative human by the

use of a digital computer as a tool. This procedure would involve

considerable interaction between man and the machine and would

be facilitated by automatic programming and by input-output equip-

ment designed for direct human use.

Once he became interested in computing, von Neumann made
important contributions to all aspects of the subject and its tech-

nology. The extant methods of computation had been developed for

hand computation and punched card machines and hence were not

well suited to the new electronic computers, which were several orders

of magnitude faster than the old. New methods were needed, and von

Neumann developed many of them. He contributed at all levels. He
devised algorithms and wrote programs for computations ranging

from the calculation of elementary functions to the integration of

non-linear partial differential equations and the solutions of games.

8 In view of von Neumann's emphasis on the role of intuition in mathemati-
cal discovery it is of interest to note that von Neumann's own intuition was
auditory and abstract rather than visual. See Ulam, "John von Neumann,
1903-1957," pp. 12, 23, and 38-39.
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He worked on general techniques for numerical integration and in-

verting matrices. He obtained results in the theory of numerical

stability and the accumulation of round-off errors. He helped develop

the Monte Carlo method for solving integro-differential equations,

inverting matrices, and solving linear systems of equations by ran-

dom sampling techniques.9 In this method the problem to be solved

is reduced to a statistical problem which is then solved by computing

the results for a sufficiently large sample of instances.

Von Neumann also made important contributions to the design

and programming of computers, and to the theory thereof. We will

survey his work in these areas next.

Logical Design of Computers. With his strong interest in computing

and his background in logic and physics it was natural for von Neu-

mann to become involved in the development of high-speed electronic

digital computers. The first such computer was the ENIAC, designed

and built at the Moore School of Electrical Engineering of the Uni-

versity of Pennsylvania during the period 1943 to 1946. 10 Von Neu-

mann had some contacts with this machine, and so a few words about

it are in order.

The idea of constructing a general purpose high-speed computer of

electronic components originated with John Mauchly, who suggested

to H. H. Goldstine of the Ordnance Department that the United

States Army support the development and construction of such a

machine, to be used primarily for ballistics computations. This sup-

port was given, the Army being impressed especially with the great

speed with which an electronic computer could prepare firing tables.

The ENIAC was designed and constructed by a number of people,

including the writer, under the technical direction of Mauchly and

J. P. Eckert. Von Neumann came to visit us while we were building

the ENIAC, and he immediately became interested in it. By this time

the design of the ENIAC was already fixed, but after the ENIAC was

completed von Neumann showed how to modify it so that it was much
simpler to program. In the meantime he developed the logical design

for a radically new computer, which we will describe later.

The ENIAC was, of course, radically different from any earlier

9 Ulam, "John von Neumann,'' pp. 33-34. Von Neumann Collected Works
5.751-764. The method is described in Metropolis and Ulam, "The Monte Carlo

Method."
10 See Burks, "Electronic Computing Circuits of the ENIAC" and "Super

Electronic Computing Machine," Goldstine and Goldstine, "The Electronic

Numerical Integrator and Computer (ENIAC)," and Brainerd and Sharpless,

"The ENIAC."
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computer, but interestingly enough, it was also quite different from

its immediate successors. It differed from its immediate successors in

two fundamental respects: the use of several semiautonomous com-

puting units working simultaneously and semi-independently, and

the exclusive reliance on vacuum tubes for high-speed storage. Both

of these design features resulted from the electronic technology of the

time.

The basic pulse rate of the ENIAC circuits was 100,000 pulses per

second. To obtain a high computation speed all 10 (or 20) decimal

digits were processed in parallel, and, moreover, a large number of

computing units were constructed, each with some local programming

equipment, so that many computations could proceed simultaneously

under the overall direction of a master programming unit. There were

30 basic units in the ENIAC: 20 accumulators (each of which could

store and add a 10-digit number), 1 multiplier, 1 divider and square-

rooter, 3 function table units, an input unit, an output unit, a master

programmer, and 2 other units concerned with control. All of these

basic units could operate at the same time.

At that time the vacuum tube was the only reliable high-speed stor-

age device—acoustic delay lines, electrostatic storage systems, mag-

netic cores, etc., all came later—and so of necessity vacuum tubes were

used for high-speed storage as well as for arithmetic and for logical

control. This entailed a severe limitation on the high-speed store, as

vacuum tubes are an expensive and bulky storage medium—the

ENIAC contained 18,000 vacuum tubes as it was, a sufficient number
for the skeptics to predict that it would never operate properly. The
limited high speed storage of 20 10-digit decimal numbers was aug-

mented by large quantities of low-speed storage of various types: elec-

tromagnetic relays for input and output, hand operated mechanical

switches controlling resistor matrices in the function table units for

the storage of arbitrary numerical functions and of program informa-

tion, and hand-operated mechanical switches and flexible plug-in

cables for programming.

A general purpose computer must be programmed for each particu-

lar problem. This was done on the ENIAC by hand: by setting me-

chanical switches of the program controls of each of the computing

units used in the problem, interconnecting these program controls with

cables, and setting the switches of the function tables. This program-

ming procedure was long, laborious, and hard to check, and while it

was being done the machine stood idle. After the ENIAC was com-

pleted, von Neumann showed how to convert it into a centrally

programmed computer in which all the programming could be done
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by setting switches on the function tables. Each of the three function

table units had a switch storage capacity of 104 entries, each entry

consisting of 12 decimal digits and 2 sign digits. However, the pulses

used to represent numbers were the same size and shape as the pulses

used to stimulate program controls, so that the function table units

could also be used to store program information. On von Neumann's
scheme the outputs of the function tables were connected to the pro-

gram controls of the other units through some special equipment and

the master programmer, and the switches on the program controls

of these units were set. All of this was done in such a way that it need

not be changed from problem to problem. Programming was thus

reduced to setting switches by hand on the function table units.

In the meantime we were all concerned with the design of much
more powerful computers. As mentioned earlier, the greatest weakness

of the ENIAC was the smallness of its high-speed storage capacity,

resulting from the technological fact that at the time the design of

the ENIAC was fixed the vacuum tube was the only known reliable

high-speed storage component. This limitation was overcome and the

technology of computers changed abruptly when J. P. Eckert con-

ceived of using an acoustic delay line as a high-speed storage device.

Acoustic delay lines made of mercury had been used to delay pulses

in war time radar equipment. Eckert's idea was to feed the output of

a mercury delay line (through an amplifier and pulse reshaper) back

into its input, thereby storing a large number of pulses in a circulat-

ing memory. A circulating memory of, say, 1000 bits could be built

with a mercury delay line and a few tubes, in contrast to the ENIAC
where a double triode was required for each bit.

In the ENIAC the few numbers being processed were stored in cir-

cuits that could be changed both automatically and rapidly; all other

numbers and the program information were stored in electromagnetic

relays, switches, and cable interconnections. It now became possible to

store all this information in mercury delay lines, where it would be

quickly and automatically accessible. The ENIAC wras a mixed syn-

chronous, asynchronous machine. The use of pulses in the mercury

delay lines made it natural to build a completely synchronous machine

timed by a central source of pulses called the "clock.' ' Eckert and

Mauchly designed circuits capable of operating at a pulse rate of 1

megacycle, 10 times the basic pulse rate of the ENIAC, and gave con-

siderable thought to the design of a mercury delay line machine.

Goldstine brought von Neumann in as a consultant, and we all par-

ticipated in discussions of the logical design of such a machine. It was

decided to use the binary system. Since the delay lines operated



editor's introduction g

serially, the simplest way to process the bits was seriatim. All of this

made it possible to build a machine much smaller than the ENIAC
and yet much more powerful than the ENIAC. The proposed machine

was to be called the EDVAC. It was estimated that it could be built

with about 3000 vacuum tubes.

Von Neumann then worked out in considerable detail the logical

design of this computer. The result appeared in his First Draft of a

Report on the EDVAC, 11 which was never published. Since this report

contained the first logical design of an electronic computer in which

the program could be stored and modified electronically, I will sum-
marize its contents. Of particular interest to us here are the following

features of his design: the separation of logical from circuit design, the

comparison of the machine to the human nervous system, the general

organization of the machine, and the treatment of programming and
control.

Von Neumann based his construction on idealized switch-delay ele-

ments derived from the idealized neural elements of McCulloch and
Pitts. 12 Each such element has one to three excitatory inputs, possibly

one or two inhibitory inputs, a threshold number (1, 2, 3), and a unit

delay. It emits a stimulus at time t + 1 if and only if two conditions /

are satisfied at time t: (1) no inhibitory input is stimulated, (2) the

number of excitatory inputs stimulated is at least as great as the

threshold number. 13

The use of idealized computing elements has two advantages. First,

it enables the designer to separate the logical design from the circuit

design of the computer. When designing the ENIAC, we developed

logical design rules, but these were inextricably tied in with rules

governing circuit design. With idealized computing elements one can

distinguish the purely logical (memory and truth-functional) require-

ments for a computer from the requirements imposed by the state of

technology and ultimately by the physical limitations of the materials

and components from which the computer is made. Logical design is

the first step; circuit design follows. The elements for logical design

11 The initials abbreviate "Electronic Discrete Variable Automatic Com-
puter." The machine of this name actually constructed at the Moore School
of Electrical Engineering was built after the people mentioned above were
no longer connected with the Moore School. The logical design of the Cam-
bridge University EDSAC was based on this report. Wilkes, "Progress in High-
Speed Calculating Machine Design" and Automatic Digital Computers.

12 "A Logical Calculus of the Ideas Immanent in Nervous Activity."
13 The threshold elements of "Probabilistic Logics and the Synthesis of Re-

liable Organisms from Unreliable Components," Collected Works 5.332, are

similar, but differ with respect to the operation of inhibitory inputs.
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should be chosen to correspond roughly with the resultant circuits;

that is, the idealization should not be so extreme as to be unrealistic.

Second, the use of idealized computing elements is a step in the

direction of a theory of automata. Logical design in terms of these

elements can be done with the rigor of mathematical logic, whereas

engineering design is necessarily an art and a technique in part. More-

over, this approach facilitates a comparison and contrast between

different types of automata elements, in this case, between computer

elements on the one hand and neurons on the other. Von Neumann
made such comparisons in First Draft of a Report on the EDVAC, not-

ing the differences as well as the similarities. Thus he observed that

the circuits of the EDVAC were to be synchronous (timed by a pulse

clock) while the nervous system is presumably asynchronous (timed

autonomously by the successive reaction times of its own elements).

He also noted the analogy between the associative, sensory, and motor

neurons of the human nervous system on the one hand, and the

central part of the computer, its input, and its output, respectively.

This comparison of natural and artificial automata was to become a

strong theme of his theory of automata.

The organization of the EDVAC was to be radically different from

that of the ENIAC. The ENIAC had a number of basic units, all

capable of operating simultaneously, so that many streams of com-

putation could proceed at the same time. In contrast, the proposed

EDVAC had only one basic unit of each kind, and it never performed

two arithmetical or logical operations simultaneously. These basic

units were a high-speed memory M, a central arithmetic unit CA, an

outside recording medium R, an input organ I, an output organ O,

and a central control CC.
The memory M was to be composed of possibly as many as 256

delay lines each capable of storing 32 words of 32 bits each, together

with the switching equipment for connecting a position of M to the

rest of the machine. The memory was to store initial conditions and

boundary conditions for partial differential equations, arbitrary

numerical functions, partial results obtained during a computation,

etc., as well as the program (sequence of orders) directing the com-

putation. The outside recording medium R could be composed of

punched cards, paper tape, magnetic wire or tape, or photographic

film, or combinations thereof. It was to be used for input and output,

as well as for auxiliary low-speed storage. The input organ I trans-

ferred information from R to M; the output organ O transferred

information from M to R. The notation of M was binary; that of R
was decimal.

The central arithmetic unit CA was to contain some auxiliary regis-
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ters (one-word delay lines) for holding numbers. Under the direction

of the central control CC it was to add, subtract, multiply, divide,

compute square-roots, perform binary-decimal and decimal-binary

conversions, transfer numbers among its registers and between its

registers and M, and choose one of two numbers according to the sign

of a third number. The last operation was to be used for transfer of

control (jumping conditionally) from one order in the program to

another. Numbers were processed in CA serially, the least significant

bits being treated first, and only one operation was performed at a

time.

The first bit of each word was zero for a number, one for an order.

Eight bits of an order were allotted to the specification of the operation

to be performed and, if a reference to M was required, thirteen bits to

an address. A typical sequence would go like this. Suppose an addition

order with memory address x was located in position y of M, the

addend in the next position y + 1, and the next order to be executed

in the next position y + 2. The order at y would go into CC, the ad-

dend at y + 1 into CA, and the augend would be found in CA; the

sum would be placed in position x of M. The order at position y + 2

would be executed next.

Normally orders were taken from the delay lines in sequence, but

one order with address z provided for CC to take its next order from

memory position z. When a number was transferred from CA to

address w of M, account was taken of the contents of w; if w contained

an order (i.e., a word whose first bit was one), then the 13 most sig-

nificant bits of the result in CA were substituted for the 13 address

bits located in w. The addresses of orders could be modified auto-

matically by the machine in this way. ThisNprovision, together with

the order for shift of control to an arbitrary memory position w and

the power of CA to choose one of two numbers according to the sign

of a third, made the machine a fully automatic stored program

computer.

At the same time that he worked out the logical design of the

EDVAC von Neumann suggested the development of a high-speed

memory incorporating the principle of the iconoscope. 14 Information

is placed on the iconoscope by means of light and sensed by an electron

beam. Von Neumann suggested that information could also be placed

on the inside surface of such a tube by means of an electron beam.

The net result would be storage in the form of electrostatic charges on

a dielectric plate inside a cathode-ray tube. He predicted that such a

14 First Draft of a Report on the EDVAC, Section 12.8.
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memory would prove superior to the delay line memory. It soon be-

came apparent that this was so, and von Neumann turned his atten-

tion to an even more powerful computer based on such a memory.

The new computer was to be much faster than any other machine

under consideration, mainly for two reasons. First, in an electrostatic

storage system each position is immediately accessible, whereas a bit

or word stored in a delay line is not accessible until it travels to the end

of the line. Second, it was decided to process all (40) bits of a word in

parallel, thereby reducing the computation time. The logical design is

given in Preliminary Discussion of the Logical Design of an Electronic

Computing Instrument. 1 ^ The proposed computer was built at the

Institute for Advanced Study by a number of engineers under the di-

rection of Julian Bigelow, and was popularly known as the JONIAC. 16

While the machine was still under construction, its logical and cir-

cuit design was influential on many computers constructed in the

United States, including computers at the University of Illinois, Los

Alamos National Laboratory, Argonne National Laboratory, Oak
Ridge National Laboratory, and the Rand Corporation, as well as

some machines produced commercially. The JONIAC played an im-

portant role in the development of the hydrogen bomb. 17

Programming and Flow Diagrams. Von Neumann immediately

recognized that these new computers could solve large problems so

fast that new programming procedures would be needed to enable

mathematicians and programmers to make full use of the powers of

these machines. With the order code of the proposed Institute for Ad-

vanced Study computer in mind he proceeded to develop new pro-

gramming methods. The results were presented in the influential

series of reports Planning and Coding of Problems for an Electronic

Computing Instrument. 1 *

One generally begins with a mathematical formulation of a problem

and then decides what explicit computational methods he will em-

ploy. These methods are almost always highly inductive, involving

recursions within recursions many times over. What one has at this

15 This was written in collaboration with H. H. Goldstine and the present

writer. It was typical of von Neumann that he wanted the patentable material

in this report to belong to the public domain, and at his suggestion we all signed

a notarized statement to this effect.
16 It is described by Estrin, ' 'The Electronic Computer at the Institute for

Advanced Study." The original plan was to use the memory described by
Rajchman in 'The Selectron—a Tube for Selective Electrostatic Storage,' ' but

the actual memory consisted of cathode-ray tubes operated in the manner de-

scribed by Williams in "A Cathode-Ray Digit Store."
17 New York Times, Feb. 9, 1957, p. 19.
18 Written in collaboration with H. H. Goldstine.
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stage is a general description of the desired computation, expressed in

the ordinary language and mathematical symbolism of the mathe-

matician. The task is now to transform this description into a program

expressed in machine language. This is not a simple, straightforward

translation task, however, partly because of the generality of the

description of the computation and partly because of the nature of

recursive procedures.

Recursive procedures, particularly when complicated, are better

understood dynamically (in terms of their step by step effects) rather

than statically (in terms of the static sequence of symbols defining

them). The corresponding aspect of the machine language is that the

effect of an order is dependent on the very computation which it itself

is helping to direct: whether and how often an order is used and to what

memory position it refers. All of these are a function of the whole

program and the numbers being processed. Thus a program, though a

static sequence of symbols, is usually best understood in terms of its

dynamic effects, that is, its control of the actual sequential computa-

tional process.

To help bridge this gap between the mathematician's description of

the desired computation in his own language and the corresponding

program in the machine language, von Neumann invented the flow

diagram. A flow diagram is a labeled graph composed of enclosures

and points connected by lines. The enclosures are of various kinds:

operation boxes (specifying non-recursive fragments of the computa-

tion as symbolized in the box), alternative boxes (corresponding to

conditional transfer of control orders and being labeled with the

condition for transfer), substitution and assertion boxes (indicating

the values of the indices of the recursions)^ storage boxes (giving the

contents of crucial parts of the memory at certain stages of the com-

putation), and labeled circles representing the beginning and terminus

and interconnections. In executing the program corresponding to a

given flow diagram, the computer in effect travels through the flow

diagram, starting at the beginning circle, executing sequences of or-

ders described in operation boxes, cycling back or branching off to a

new part of the diagram according to the criteria stated in alternative

boxes, leaving an exit circle in one part of the graph to enter an en-

trance circle in another part of the graph, and finally stopping at the

terminal circle. Direct lines are used to represent the direction of

passage through the graph, converging lines meeting at points of the

graph. An undirected line is used to connect a storage box to that

point of the graph which corresponds to the stage of computation

partly described by the contents of the storage box.
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It is unnecessary for the programmer to prepare and code a com-

plete flow diagram for a complicated problem. A problem of any con-

siderable complexity is composed of many subproblems, and flow

diagrams and subroutines can be prepared for these in advance. It

was planned to code subroutines corresponding to a large number of

basic algorithms employed in solving problems on a digital computer:

decimal-to-binary and binary-to-decimal conversion, double precision

arithmetics, various integration and interpolation methods, meshing

and sorting algorithms, etc. These subroutines would be available in a

library of tapes. To solve a particular problem, the programmer would

merely write a "combining routine" which would direct the computer

to take the proper subroutines from the tape and modify them ap-

propriately to that particular problem.

The use of combining routines and a library of subroutines was a

first step in the direction of using a computer to help prepare programs

for itself. Still, in this system, everything written by the programmer

must be in the clumsy "machine language." A better procedure is to

construct a "programmer's language" in which the programmer will

write programs, and then to write a translation program in machine

language which directs the machine to translate a program written in

the programmer's language into a program stated in machine lan-

guage. The programming language would be close to the natural and

mathematical language normally used by mathematicians, scientists,

and engineers, and hence would be easy for the programmer to use.

This approach is currently being developed under the name of auto-

matic programming. Von Neumann discussed it under the names

"short code" (programmer's language) and "complete code" (machine

language).
19

Von Neumann recognized that the idea of automatic programming

is a practical application of Turing's proof that there exists a universal

computing machine. A Turing machine is a finite automaton with an

indefinitely expandable tape. Any general purpose computer, together

with an automatic factory which can augment its tape store without

limit, is a Turing machine. Turing's universal computer U has this

property: for any Turing machine M there is a finite program P such

that machine U, operating under the direction of P, will compute the

same results as M. That is, U with P simulates (imitates) M.
Automatic programming also involves simulation. Let Uc be a com-

puter which operates with a machine language inconvenient for the

19 The Computer and the Brain, pp. 70-73.
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programmer to use. The programmer uses his more convenient pro-

grammer's language. It is theoretically possible to build a machine

which will understand the programmer's language directly; call this

hypothetical computer Mp . Let P t be the program (written in the

language of machine Uc) which translates from the programmer's

language to the machine language of Uc . Then Uc ,
operating under

the direction of P t , will compute the same results as Mp . That is,

Uc with P t simulates Mp , which is a special case of Turing's uni-

versal U with P simulating M.
Note that two languages are employed inside Uc • a machine

language which is used directly and a programmer's language which

is used indirectly via the translation routine P t . Von Neumann re~

ferred to these as the "primary" and "secondary" language of the

machine, respectively. The primary language is the language used for

communication and control within the machine, while the secondary

language is the language we humans use to communicate with the

machine. Von Neumann suggested that by analogy there may be a

primary and secondary language in the human nervous system, and

that the primary language is very different from any language we
know.

Thus the nervous system appears to be using a radically different system

of notation from the ones we are familiar with in ordinary arithmetics and
mathematics. . . .

. . . whatever language the central nervous system is using, it is characterized

by less logical and arithmetical depth than what we are normally used to.

Thus logics and mathematics in the central nervous system, when viewed as

languages, must be structurally essentially different from those languages to

which our common experience refers. ^

. . . when we talk mathematics, we may be discussing a secondary language,

built on the primary language truly used by the central nervous system.20

He thought that the primary language of the nervous system was

statistical in character. Hence his work on probabilistic logics was

relevant to this language. See his discussion of probabilistic logics

and reliability in the Third and Fourth Lectures of Part I below and

in "Probabilistic Logics and the Synthesis of Reliable Organisms

from Unreliable Components."

Computer Circuits. From the beginning von Neumann had an in-

terest in the circuits and components of electronic digital computers.

The Computer and the Brain, pp. 79-82.
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He analyzed the basic physical and chemical properties of matter

with the purpose of developing improved computer components.21 In

his lectures on automata theory he compared natural and artificial

components with respect to speed, size, reliability, and energy dis-

sipation, and he computed the thermodynamic minimum of energy

required for a binary decision. See the Fourth Lecture of Part I of the

present volume. His search for physical phenomena and effects that

could be used for computing led to his invention of a new component.

This is a subharmonic generator which is driven by an excitation

(power) source at frequency nf (n = 2, 3, 4, • • •) and which oscillates

at the subharmonic frequency f.
22 The subharmonic generator cir-

cuit incorporates an inductance and capacitance circuit tuned to the

frequency /. Either the capacitance or inductance is non-linear, and

its value varies periodically under the influence of the exciting signal

(of frequency nf). The oscillation at frequency / can occur in any of n
distinct phases. Each oscillation phase is highly stable when estab-

lished, but, when the oscillation begins, the choice of phase can easily

be controlled by a small input signal of frequency / and of the desired

phase. Modulating (turning off and on) the exciting source (of fre-

quency nf) with a square wave (clock signal) of much lower frequency

produces alternate passive and active periods, and an input of fre-

quency / can select one of the n phases of oscillation as the exciting

signal appears.

To transfer the phase state of one subharmonic generator (a trans-

mitter) to another (a receiver), the transmitter and receiver are

coupled through a transformer. The square-wave modulations into

transmitter and receiver are of the same frequency but of different

phase, so that the transmitter is still on while the receiver is just

21 Most of his ideas in this area were only discussed with others and never
published. A brief reference occurs in Preliminary Discussion of the Logical

Design of an Electronic Computing Instrument, Collected Works 5.39. Booth,
"The Future of Automatic Digital Computers," p. 341, mentions a supercon-
ducting storage element discussed with von Neumann in 1947. Von Neumann
also did some early work on the MASER. See Collected Works 5.420, Scientific

American (February, 1963) p. 12, and Scientific American (April, 1963) pp.
14-15.

22 "Non-Linear Capacitance of Inductance Switching, Amplifying and
Memory Devices." Von Neumann's ideas are also described by Wigington, "A
New Concept in Computing."

The parametron, invented independently by E. Goto, embodies essentially

the same idea, but is far different in the suggested speed of implementation. See

Goto, "The Parametron, a Digital Computing Element which Utilizes Para-
metric Oscillation." The highest frequencies Goto reports are an exciting fre-

quency (2/) of 6 X 10 6 cycles per second and a clock frequency of 10 5 cycles.

According to Wigington, op. cit.
y
von Neumann estimated that an exciting fre-

quency (20 of 5 X 1010 and a clock rate of 10 9 were feasible.
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coming on. As a result the receiver begins oscillating at frequency / in

phase with the transmitter. The receiver can later transmit its state

to another subharmonic generator, and so on down the line. One may
use three clock signals, all of the same frequency but of three different

phases, and, by exciting interconnected generators with the proper

clock signals, transfer information around a system of generators.

Each such generator then has an input and an output operating at

frequency/, beside the exciting input of frequency nf; the phasing of

the two different clock signals to two interconnected generators de-

termines which generator is the receiver and which is the transmitter.

The output signal (at/) has much more power than is required for the

input signal (at /) to control the phase of the oscillation, and so the

subharmonic generator is an amplifier at frequency /, the power for

amplification coming from the exciting signal of frequency nf.

Since the oscillation of the subharmonic generator is stable and con-

tinues after the subharmonic input from another generator terminates,

the device clearly has memory capacity. Switching can also be done

with subharmonic generators, in the following way. Let n = 2; i.e.,

let there be two distinct phases of subharmonic oscillation at frequency

/, so that the system is binary. Connect the outputs of three trans-

mitting generators to the primary of a transmitter so that the voltages

of these outputs add; connect a receiver generator to the secondary

of this transformer. The voltage of the transformer secondary will then

have the phase of the majority of the transmitting generators, so that

the receiving generator will oscillate in this phase. This arrangement

realizes a majority element, that is, a three-input switch with delay

whose output state is "1" if and only if two or more inputs are in

state "l". 23 A negation element may be realized by connecting the

output of one generator to the input of another and reversing the

direction of the transformer winding. The constants "0" and "1" are

realized by sources of the two different phases of the signal of fre-

quency /. The majority element, negation element, and the constant

sources "0" and "1" are sufficient to do all computing, so that the

central part of a computer can be completely constructed from sub-

harmonic generators. 24

Von Neumann's Theory of Automata

Introduction. On reviewing the preceding sketch of von Neumann's

research accomplishments, one is immediately struck by the tremen-

23 "Probabilistic Logics and the Synthesis of Reliable Organisms from Un-
reliable Components, " Collected Works 5.339.

24 Many computers are so constructed. See Goto, op. ext.
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dous combination of breadth and depth revealed in those accomplish-

ments. Particularly notable is the extent to which von Neumann's
achievements range from the purely theoretical to the extremely

practical. It should be added in the latter connection that he was
among the first to recognize and promote the tremendous potentiali-

ties in computers for technological revolution and the prediction and

control of man's environment, such as the weather.

Von Neumann was able to make substantial contributions to so

many different fields because he possessed a rare combination of differ-

ent abilities along with wide interests. His quick understanding and

powerful memory enabled him to absorb, organize, retain, and use

large quantities of information. His wide interests led him to work in

and keep contact with many areas. He was a virtuoso at solving diffi-

cult problems of all kinds and at analyzing his way to the essence of

any situation.

This wide range of interests and abilities was one of von Neumann's

great strengths as a mathematician and made him an applied mathe-

matician par excellence. He was familiar with the actual problems of

the natural and engineering sciences, on the one hand, and the ab-

stract methods of pure mathematics on the other. He was rare among
mathematicians in his ability to communicate with scientists and

engineers. This combination of theory and practice was deliberately

cultivated by von Neumann. He was a careful student of the history *

and nature of scientific method and its relation to pure mathematics25

and believed that mathematics must get its inspiration from the

empirical sciences.

Given his background and type of mind, it was natural for von

Neumann to begin to construct a general theory of computers. Being

aware of the important similarities between computers and natural

organisms, and of the heuristic advantages in comparing such different

but related systems, he sought a theory that would cover them both.

He called his proposed systematic theory the "theory of automata."

This theory of automata was to be a coherent body of concepts and

principles concerning the structure and organization of both natural

and artificial systems, the role of language and information in such

systems, and the programming and control of such systems. Von
Neumann discussed the general nature of automata theory at several

places in Part I and in Chapter 1 of Part II of the present volume.

Von Neumann's early work on computer design and programming

25 See Chapter 1 of Theory of Games and Economic Behavior; ''The Mathe-
matician," Collected Works 1.1-9; and "Method in the Physical Sciences,"

Collected Works 6.491-498.



editor's introduction I!)

led him to recognize that mathematical logic would play a strong role

in the new theory of automata. But for reasons to be mentioned later,

he thought that mathematical logic in its present form, though useful

in treating automata, is not adequate to serve as "the" logic of auto-

mata. Instead, he believed that a new logic of automata will arise

which will strongly resemble and interconnect with probability theory,

thermodynamics, and information theory. It is obvious from all this

that von Neumann's theory of automata will, in the beginning at

least, be highly interdisciplinary.

Unfortunately, because of his premature death, von Neumann was

unable to put in final form any of the research he was doing in auto-

mata theory. In his last work on this subject he said that "it would be

very satisfactory if one could talk about a 'theory' of such automata.

Regrettably, what at this moment exists . . . can as yet be described

only as an imperfectly articulated and hardly formalized 'body of

experience'." 26 Von Neumann's accomplishments in this area were

nevertheless substantial. He outlined the general nature of automata

theory: its structure, its materials, some of its problems, some of its

applications, and the form of its mathematics. He began a compara-

tive study of artificial and natural automata. Finally, he formulated

and partially answered two basic questions of automata theory: How
can reliable systems be constructed from unreliable components?

What kind of logical organization is sufficient for an automaton to be

able to reproduce itself? The first of these questions is discussed in his

"Probabilistic Logics and the Synthesis of Reliable Organisms from

Unreliable Components." The second question is discussed in the

Fifth Lecture of Part I and in Part II of the present volume.

I do not know how von Neumann was led to these two problems,

but on the basis of his interests and what he has written it is plausible

that they arose out of his actual work with computers in the following

way. The new electronic computers were revolutionary because in con-

trast to earlier computing systems (humans, mechanical and electro-

mechanical machines, and combinations thereof) they could do large

quantities of computation automatically and rapidly. The advances

through the ENIAC, the proposed EDVAC, and the Institute for

Advanced Study computer, were all big steps in the direction of more

powerful computers. His interest in solving non-linear partial differ-

ential equations in general, and in the equations for predicting the

weather in particular, would naturally lead him to desire ever more

powerful machines and to look for and try to remove the basic limita-

tions blocking the construction of such machines. As a consultant for

26 The Computer and the Brain, p. 2.
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government and industry he was very influential in promoting the

design and construction of larger computers.

Von Neumann compared the best computers that could be built at

the time with the most intelligent natural organisms and concluded

that there were three fundamental factors limiting the engineer's abil-

ity to build really powerful computers: the size of the available com-

ponents, the reliability of these components, and a lack of a theory of

the logical organization of complicated systems of computing ele-

ments. Von Neumann's work on componentry was directed toward

the first limitation, and his results on reliability and self-reproduction

each contribute toward removing both the second and the third limita-

tions. In his "Probabilistic Logics and the Synthesis of Reliable Or-

ganisms from Unreliable Components," he gave two methods of

overcoming the unreliability of the components, not by making them
more reliable, but by organizing them so that the reliability of the

whole computer is greater than the reliability of its parts. He regarded

his work on probabilistic logics as a step in the direction of the new
logic of automata. His work on self-reproduction also belongs to the

theory of complicated automata. He felt that there are qualitatively

new principles involved in systems of great complexity and searched

for these principles in the phenomenon of self-reproduction, which

clearly depends on complexity. It is also to be expected that because

of the close relation of self-reproduction to self-repair, results on self-

reproduction would help solve the reliability problem.

Thus von Neumann was especially interested in complex automata;

he wanted a theory of the logical organization of complicated systems

of computing elements. His questions about reliability and self-repro-

duction are particularly germane to complex automata.

Two further points are relevant. First, von Neumann believed that

in starting a new science one should begin with problems that can be

described clearly, even though they concern everyday phenomena and

lead to well known results, for the rigorous theory developed to explain

these phenomena can provide a base for further advances.27 His prob-

lems of reliability and self-reproduction are of this kind. Second, von

Neumann believed that the lack of an adequate theory of complicated

automata is an important practical barrier to building more powerful

machines. He explicitly stated that until an adequate theory of auto-

mata exists there is a limit in the complexity and capacity of the

automata we can fabricate. 28

27 Theory of Games and Economic Behavior, Sees. 1.3 and 1.4.

28
' 'The General and Logical Theory of Automata," Collected Works 5.302-

306.
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Natural and Artificial Automata. The scope of the theory of auto-

mata and its interdisciplinary character are revealed by a considera-

tion of the two main types of automata: the artificial and the natural.

Analog and digital computers are the most important kinds of artificial

automata, but other man-made systems for the communication and

processing of information are also included, for example, telephone

and radio systems. Natural automata include nervous systems, self-

reproductive and self-repairing systems, and the evolutionary and

adaptive aspects of organisms.

Automata theory clearly overlaps communications and control

engineering on the one hand, and biology on the other. In fact, arti-

ficial and natural automata are so broadly defined that one can legiti-

mately wonder what keeps automata theory from embracing both

these subjects. Von Neumann never discussed this question, but there

are limits to automata theory implicit in what he said. Automata

theory differs from both subjects in the central role played by mathe-

matical logic and digital computers. Though it has important engi-

neering applications, it itself is a theoretical discipline rather than a

practical one. Finally, automata theory differs from the biological

sciences in its concentration on problems of organization, structure,

language, information, and control.

Automata theory seeks general principles of organization, structure,

language, information, and control. Many of these principles are

applicable to both natural and artificial systems, and so a comparative

study of these two types of automata is a good starting point. Their

similarities and differences should be described and explained. Mathe-

matical principles applicable to both types of automata should be

developed. Thus truth-functional logic and delay logic apply to both

computer components and neurons, as does von Neumann's proba-

bilistic logic. See the Second and Third Lectures of Part I of the

present volume. Similarly, von Neumann's logical design of a self-

reproducing cellular automaton provides a connecting link between

natural organisms and digital computers. There is a striking analogy

with the theory of games at this point. Economic systems are natural;

games are artificial. The theory of games contains the mathematics

common to both economic systems and games,29 just as automata

theory contains the mathematics common to both natural and artifi-

cial automata.

Von Neumann himself devoted considerable attention to the com-

29 Theory of Games and Economic Behavior, Sees. 1.1.2 and 4.1.3.
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parison of natural and artificial automata. 30 Scientific knowledge of

the automata aspects of natural organisms has advanced very rapidly

in recent years, and so there is now a much more detailed basis for the

comparison than at the time von Neumann wrote, but his general ap-

proach and conclusions are nevertheless of interest. We will outline

his reflections under the following headings: (1) The analog-digital

distinction, (2) the physical and biological materials used for com-

ponents, (3) complexity, (4) logical organization, and (5) reliability.

(1) Von Neumann discussed the analog-digital distinction at length

and found it to be an illuminating guide in his examination of natural

automata. See the First and Fourth Lectures of Part I. His most

general conclusion was that natural organisms are mixed systems, in-
L

volving both analog and digital processes. There are many examples,

of which two will suffice here. Truth-functional logic is applicable to

neurons as a first approximation, but such neural phenomena as re-

fraction and spatial summation are continuous rather than discrete.

In complicated organisms digital operations often alternate with

analog processes. For example, the genes are digital, while the enzymes

they control function analogically. Influenced by his knowledge of

natural automata von Neumann proposed a combined analog-digital

computing scheme. 31 This is a good example of the effect of the study

of natural systems on the design of artificial ones.

(2) Von Neumann compared the components in existing natural

and artificial automata with respect to size, speed, energy require-

ments, and reliability, and he related these differences to such factors

as the stability of materials and the organization of automata. Com-
puter components are much larger and require greater energy than

neurons, though this is compensated for in part by their much greater

speed. These differences influence the organization of the system:

natural automata are more parallel in operation, digital computers

more serial. Part of the difference in size between a vacuum tube and a

neuron can be accounted for in terms of the mechanical stability of

the materials used. It is relatively easy to injure a vacuum tube and

difficult to repair it. In contrast, the neuron membrane when injured

is able to restore itself. Von Neumann calculated the thermodynamical

minimum of energy that must be dissipated by a computing element

and concluded that in theory computing elements could be of the

30 Norbert Wiener also made valuable comparisons of natural and artificial

systems in his Cybernetics, though in a somewhat different way. The two men
were aware of each others work—see Cybernetics (particularly the "Intro-

duction") and von Neumann's review of it.

31 Sec. 12 of "Probabilistic Logics and the Synthesis of Reliable Organisms
from Unreliable Components," Collected Works 5.372-377.
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order of 10 10 times more efficient in the use of energy than neurons.

See the Fourth Lecture of Part I. His comparison of natural and

artificial components no doubt influenced his work on computer com-

ponents.

(3) Man is, inter alia, a natural automaton which is obviously very

much more complex than any artificial automaton he has so far con-

structed. Because of this complexity he understands the details of his

own logical design much less than that of the largest computer he has

built. Von Neumann thought that the chief problems of automata

theory center around the concept of complexity. This very concept

needs rigorous definition. Automata theory should relate the logical

organization of complex automata to their behavior. A theory which

did this would enable us to develop the logical design of artificial

automata capable of carrying out some of the most difficult and ad-

vanced functions performed by humans as well as many other complex

functions that humans cannot perform, such as solving large systems

of non-linear partial differential equations. The problem of reliability

is especially crucial in complex systems. Von Neumann speculated

that extremely complex systems involve new principles. He thought,

for example, that below a certain level, complexity is degenerative,

and self-reproduction is impossible. He suggested that, generally

speaking, in the case of simple automata a symbolic description of the

behavior of an automaton is simpler than the automaton itself, but

that in the case of exceedingly complex automata the automaton is

simpler than a symbolic description of its behavior. See the Second

Lecture of Part I.

(4) In discussing the relative speeds of natural and artificial com-

ponents we noted that natural automata tend to be more parallel in

operation and artificial automata tend to be more serial in operation.

When planning an automaton or a computation, one can choose some-

what the extent to which it is parallel or serial, but there are definite

limits to this—e.g., in a serial computation a later operation may
depend on an earlier one and hence cannot proceed simultaneously

with it. Moreover, this choice affects other aspects of the machine,

particularly the memory requirements, for a datum that is to be

operated on later must be stored until it is needed. The memory of an

artificial automaton is generally organized in a hierarchy, different

levels of the hierarchy operating at different speeds. In a typical com-

puter there are high-speed electronic registers, slower speed magnetic

cores, and much slower magnetic tape units. In addition there is the

wiring of the machine itself, which provides the unalterable organiza-

tion of the system. Von Neumann discussed machine memory hier-
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archies, and said that we should look for similar hierarchies in natural

automata. Pulses circulating in neuron cycles, the change of neural

thresholds with use, the organization of the nervous system, and the

coding of the genes together constitute such a hierarchy.

The organization of an automaton is to be distinguished from the

organization of a particular computation in that automaton. When
both are taken into account, the difference between natural and

artificial automata with respect to serial vs. parallel operation seems

to be accentuated. Von Neumann spoke in this connection of the

"logical depth" of a computation. 32 A computation consists of a large

number of basic logical steps (switching and delay), the result of each

step depending on certain prior steps. We will call any sequence of

steps, each of which depends critically on its predecessor, a "calcula-

tion chain." The logical depth of a computation is the number of

logical steps in its longest calculation chain. Because of their great

speed, digital computers are used to perform computations of exceed-

ingly great logical depth. For the final answer to be useful its error

must be kept small, and this results in a very strong reliability require-

ment on each logical step. This brings us to von Neumann's fifth and

last main point of comparison between natural and artificial automata.

(5) The first electronic digital computers had little equipment for

the automatic detection of failure. They were designed and wired with

extreme care and were constructed of components especially selected

for great reliability. Programs were written with care and laboriously

checked. Diagnostic programs were used to detect machine errors, and

various procedures (e.g., differencing) were employed to check the

computed results. Thus these machines were designed, built, and used

in such a way that, hopefully, a single malfunction would be noted

before a second occurred. The machine would then be stopped and the

fault isolated by an analytic procedure. As von Neumann pointed out

in the Fourth Lecture of Part I, this method of handling errors would

obviously not be satisfactory for extremely complicated automata.

The very design and construction of such large automata would

result in many mistakes. Moreover, the large number of components

would result in a very short mean free path between errors and make
localization of failures too difficult. Natural automata are clearly

superior to artificial ones in this regard, for they have strong powers of

self-diagnosis and self-repair. For example, the human brain can suffer

great damage from mechanical injury or disease and still continue to

32 The Computer and the Brain, pp. 27, 79. He also spoke of the logical depth
of a language. See ibid., pp. 81-82 and the discussion of the primary language
of the nervous system at p. 15 above.
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function remarkably well. Natural and artificial automata are thus

organized in very different ways for protection against errors. Von
Neumann's work on reliability serves to link these two types of autom-

ata in this respect.

Mathematics of Automata Theory. Von Neumann intended the

theory of automata to be highly mathematical and logical. The study

of actual automata, both natural and artificial, and of their operation

and interaction, provides the empirical source of this formal compo-

nent of automata theory. This is in keeping with von Neumann's

belief that mathematics derives inspiration and ideas from empirical

subject matter.

The close connection between mathematical logic and automata

was well known to von Neumann when he wrote on automata theory.

Kurt Godel had reduced mathematical logic to computation theory

by showing that the fundamental notions of logic (such as well-formed

formula, axiom, rule of inference, proof) are essentially recursive

(effective). 33 Recursive functions are those functions which can be

computed on Turing machines, and so mathematical logic may be

treated from the point of view of automata. 34 Conversely, mathe-

matical logic may be applied to the analysis and synthesis of autom-

ata. The logical organization of an automaton can be represented

by a structure of idealized switch-delay elements and then translated

into logical symbolism. See the Second Lecture of Part I.

Because of the intimate connection between automata and logic,

logic will be at the heart of the mathematics of automata theory.

Indeed, von Neumann often spoke of a "logical theory of automata"

rather than merely a "theory of automata." Nevertheless, he felt that

the mathematics of automata theory would also have some formal

characteristics very different from those of logic. Roughly speaking,

mathematics can be divided into the discrete and the continuous.

Logic is a branch of discrete mathematics and is highly combinatorial.

Von Neumann thought that automata mathematics should be closer

to the continuous and should draw heavily on analysis. He thought

that the specific problems of automata theory require this, and he felt

that there is a general advantage in an analytical as opposed to a

combinatorial approach in mathematics.

There is an important topic in the theory of automata that requires

33 "Uber formal unentscheidbare Satze der Principia Mathematica und
verwandter Systeme I." The notion of theoremhood is not in general recur-

sive, but the theorems of a formal language are always recursively enumerable.
34 Turing, "On Computable Numbers, with an Application to the Entschei-

dungsproblem" and "Computability and X-Definability."
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a more analytical treatment than is usual in logic. Automata theory

must encompass the probability of failure of a component. Mathe-

matical logic treats only the perfect or deterministic operation of

idealized switch-delay elements; it provides no theoretical treatment

of error. Hence in using mathematical logic for actual design one must

supplement it by considerations that lie outside the subject itself.

Von Neumann wanted a probabilistic logic which would handle com-

ponent malfunction as an essential and integral part of automata

operation. While probability theory is strongly combinatorial, it also

makes important contacts with analysis.

Including the probability of failure in the logic of automata forces

one to consider the size of a computation. The usual approach in

mathematical logic is to consider whether or not something can be

accomplished by an automaton in a finite number of steps, regardless

of how large the number is. But on any realistic assumption about

component failure, the larger the calculation the more likely the

machine will err during it, and the less Hkely the result will be correct.

This concern for the size of a computation also arises from our practi-

cal interests in automata. Computers are built in order to produce

certain results in the available time. Since many of the functions we
desire computers to perform are now performed by humans, it should

be kept in mind in this connection that man is a finite automaton, not

a Turing machine. Von Neumann did not suggest how to construct a

theory of the sizes of computations. Presumably this theory would

be based on a quantitative notion of "amount of computation' ' which

would take into account both the length of a calculation (the "logical

depth" of p. 24 above) and its width (the amount of parallelism in it).

Thus a theory of the quantity of computation and the likelihood of

its being wrong must include continuous as well as discrete mathe-

matics.

All of this will lead to theories which are much less rigidly of an all-or-none

nature than past and present formal logic. They will be of a much less com-

binatorial, and much more analytical, character. In fact, there are numerous
indications to make us believe that this new system of formal logic will move
closer to another discipline which has been little linked in the past with logic.

This is thermodynamics, primarily in the form it was received from Boltz-

mann, and is that part of theoretical physics which comes nearest in some of

its aspects to manipulating and measuring information. Its techniques are

indeed much more analytical than combinatorial, which again illustrates the

point that I have been trying to make above.85

36 "The General and Logical Theory of Automata, " Collected Works 5.304.

The next quotation is from the same article, 5.303.
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Von Neumann also held that there is a methodological advantage

in employing analysis in the mathematics of automata.

Everybody who has worked in formal logic will confirm that it is one of the

technically most refractory parts of mathematics. The reason for this is that

it deals with rigid, all-or-none concepts, and has very little contact with the

continuous concept of the real or of the complex number, that is, with mathe-

matical analysis. Yet analysis is the technically most successful and best-

elaborated part of mathematics. Thus formal logic is, by the nature of its

approach, cut off from the best cultivated portions of mathematics, and
forced onto the most difficult part of the mathematical terrain, into combina-

torics.

This comment is particularly significant since von Neumann made
important contributions to discrete mathematics. In Theory of Games

and Economic Behavior he stated that the mathematics to be developed

for social theory should emphasize combinatorics and set theory

rather than differential equations. 36

In his own work in automata theory von Neumann moved from the

discrete toward the continuous. His probabilistic logic is an example.

After presenting this logic, he proposed a mixed analog-digital com-

puting system closely related to it.
37 His first models of self-reproduc-

tion were discrete, but he hoped later to develop a continuous model

of self-reproduction. See Section 1.1.2.3 of Part II of the present

volume.

We noted before that von Neumann often referred to his theory of

automata as a "logical theory of automata. " He also called it "theory

of automata and information'' and sometimes just "theory of infor-

mation," indicating the strong role that he expected information

theory to play in the subject. He divided the theory of control and

information into two parts: a strict part and a probabilistic part. The
rigorous or strict part includes mathematical logic as extended to

cover finite automata and Turing machines. The statistical or proba-

bilistic part includes the work of Shannon on information theory38 and

von Neumann's probabilistic logic. Von Neumann regarded his

probabilistic logic as an extension of rigorous logic.

There is a close connection between information theory and thermo-

dynamics, both subjects employing the concept of probability in very

much the same way. See the Third Lecture of Part I, especially the

quotation from von Neumann's review of Wiener's Cybernetics.

36 Sec. 4.8.3. Cf. Sec. 1.2.5.

37 Sec. 12 of "Probabilistic Logics and the Synthesis of Reliable Organisms
from Unreliable Components," Collected Works 5.372-377.

38 "A Mathematical Theory of Communication."
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Von Neumann mentioned two further connections between ther-

modynamics and automata theory. First, he found an analog of ther-

modynamic degeneration in the theory of self-reproducing automata:

below a certain minimum level, complexity and degree of organiza-

tion are degenerative, but above that level they are not degenerative

and may even increase. Second, he discussed the thermodynamic

aspect of the concept of balance in computing machine design. The
efficiency of a computer depends on the proper balance of its different

parts with respect to speed and size. For example, in the memory
hierarchy the different kinds of memory (e.g., transistor, core, tape)

should be matched to one another in size and speed. A computer in

which the arithmetic unit is too fast for the memory, or the memory is

too small, is like a heat engine which is inefficient because large tem-

perature differences exist between two parts of it. The efficiency of a

computer must be defined relative to its environment (i.e., the prob-

lems it is to solve), just as the efficiency of a heat engine depends on

its environment. These problems of balance and matching are handled

empirically by engineers. Von Neumann wanted a quantitative theory

of balance akin to thermodynamics.

To conclude, von Neumann thought that the mathematics of auto-

mata theory should start with mathematical logic and move toward

analysis, probability theory, and thermodynamics. When it is devel-

oped, the theory of automata will enable us to understand automata

of great complexity, in particular, the human nervous system. Mathe-

matical reasoning is performed by the human nervous system, and the

"primary" language in which mathematical reasoning takes place is

analogous to the primary language of a computing machine (p.

15 above). It is thus quite possible that automata theory will

affect logic and our fundamental concepts of mathematics.

I suspect that a deeper mathematical study of the nervous system . . . will

affect our understanding of the aspects of mathematics itself that are in-

volved. In fact, it may alter the way in which we look on mathematics and
logics proper.39

Now logic lies at the foundation of mathematics; therefore, if von

Neumann's suggestion is true, automata theory will move full circle:

starting at the foundation of mathematics and ending there.

Arthur W. Burks

39 The Computer and the Brain, p. 2; cf. pp. 70-82. See also Ulam, "John
von Neumann, 1903-1957," p. 12.
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First Lecture

COMPUTING MACHINES IN GENERAL

Conceptual and numerical methods in mathematics. The role of the latter

in applied mathematics and in mathematical physics. Their role in pure

mathematics. The situation in analysis. Numerical procedures as heuristic

tools.

Various forms of the numerical approach: Analog and digital.

The analog procedure : The use of the physical experiment as a substitute

for computing. Analog computing machines.

The digital procedure: Manual computing. Simple machines. Fully auto-

matic computing.

The present status of computing machines. Present roles of analog and

digital machines. Questions of speed, programming, and precision.

The concept of an elementary operation in a computing machine. Its role

in analog machines and in digital machines. Observations on analog com-

ponentry. Observations on digital componentry.

The relay organ. Main forms: The electro-mechanical relay. The vacuum
tube. Other possible relay organs.

Measurement of the length or complexity of a numerical calculation.

Logical and arithmetical operations. Linear and non-linear arithmetical

operations. The role of the number of multiplications. Stability of the statis-

tical characteristics of various parts of mathematics. The special role of

analysis.

Various characteristic levels of length or complexity. Characteristic

problem lengths for automatic digital machines.

Precision requirements.

Memory requirements: Measurement of memory capacity. The decisive

characteristics of a memory: Access time and capacity. Reasons for a hier-

archic organization of memory. Actual memory requirements of an automatic

digital machine.

Input-output: Main available media.

The concept of balance: Speed balance of various components. Balance

between memory capacity in various stages of the hierarchy and speeds.

Balance between speed and precision. Balance between speed, memory
capacity, and programming capacity.

Thermodynamical aspects of the concept of balance. Thermodynamical

aspects of the memory capacity. Need for a quantitative theory, contrasted

31
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with the present empirical procedures. Preliminary remarks on reliability and

errors.

Ladies and gentlemen, I wish to thank you for your very friendly

welcome on my five occasions to talk to you, and I hope that I will be

able to offer something for the variety of interests which are repre-

sented here. I will talk about automata—the behavior of very com-

plicated automata and the very specific difficulties caused by high

complication. I shall discuss briefly the very plausible, very obvious

analogies which come to mind between artificial automata and or-

ganisms, which within a certain limit of their functioning are natural

automata. We must consider the similarities, the dissimilarities, the

extent to which the dissimilarities are due to our skill or clumsiness

(the latter being the more normal phenomenon), and the extent to

which these dissimilarities are really matters of principle.

Today I will talk chiefly about artificial automata, and specifically

about one variety of artificial automata, namely, computing machines.

I will talk about their role in the near past and present and about what

to expect from them in the future.

I am talking about computing machines partly because my interests

in the subject of automata are mathematical and, from the mathe-

matical point of view, computing machines are the most interesting

and most critical automata. But quite apart from this ex parte argu-

ment from the mathematical side, there is the important question of

automata of very, very high complexity. Of all automata of high com-

plexity, computing machines are the ones which we have the best

chance of understanding. In the case of computing machines the

complications can be very high, and yet they pertain to an object

which is primarily mathematical and which we understand better

than we understand most natural objects. Therefore, by considering

computing machines, we can discuss what we know and what we do

not know, what is right and what is wrong, and what the limitations

are, much more clearly than if we discussed other types of automata.

You will see that our discussion of complex automata is very far from

perfect and that one of our main conclusions is that we need very

badly a theory which we do not at this moment possess.

Let me first say something from the properly mathematical side,

namely, the role which computing machinery has played or might play

in mathematics and in adjacent subjects. Speaking of numerical com-

puting in general, it is not necessary to discuss what role it can play

in many applications of mathematical methods. It's perfectly clear

that numerical computing plays a large role in engineering. If more
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computing and faster computing could be done, one would have even

more uses for computing in engineering.

Let me come now to the less obvious things. In physics, particularly

in theoretical physics, it is clear that mathematical methods play a

great role and that to a large extent they are of the same variety as

pure mathematics, that is, they are abstract and analytical. However,

effective computing plays a role in physics which is larger than the

role one would expect it to have in mathematics proper. For instance,

there are large areas of modern quantum theory in which effective

iterative computing could play a large role. A considerable segment of

chemistry could be moved from the laboratory field into the purely

theoretical and mathematical field if one could integrate the applicable

equations of quantum theory. Quantum mechanics and chemistry

offer a continuous spectrum of problems of increasing difficulty and

increasing complexity, treating, for example, atoms with increasing

numbers of electrons and molecules with increasing numbers of

valence electrons. Almost any improvement in our standards of com-

puting would open important new areas of application and would

make new areas of chemistry accessible to strictly theoretical methods.

However, I will not go into great detail on this subject either but

would like to give you a brief indication of what role this kind of com-

puting might play in mathematics proper, that is, in pure mathe-

matics. In pure mathematics the really powerful methods are only

effective when one already has some intuitive connection with the

subject, when one already has, before a proof has been carried out,

some intuitive insight, some expectation which, in a majority of cases,

proves to be right. In this case one is already ahead of the game and

suspects the direction in which the result lies. A very great difficulty

in any new kind of mathematics is that there is a vicious circle: you

are at a terrible disadvantage in applying the proper pure mathe-

matical methods unless you already have a reasonably intuitive

heuristic relation to the subject and unless you have had some sub-

stantive mathematical successes in it already. In the early stages of

any discipline this is an enormous difficulty; progress has an auto-

catalytic feature. This difficulty may be overcome by some excep-

tionally lucky or exceptionally ingenious performance, but there are

several outstanding instances where this has failed to happen for two,

three, or four generations.

One of these areas which has been conspicuous for some time is the

area of non-linear problems. The great successes of the nineteenth

century, as well as of modern analysis, were in linear problems. We
have much less experience with non-linear problems, and we can say
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practically nothing about the majority of non-linear partial differ-

ential equations. We have never been successful with these at all, and

therefore we have absolutely no idea what the difficulties are.

In those few domains where some progress had been made it was
usually for different reasons, for instance, because some very usual

physical phenomenon was tied up with the mathematical problems

and therefore one had a non-mathematical, physical approach. In

these domains scientists discovered the most surprising types of sin-

gularities, which have absolutely no analogs in the linear domain we
know so well, that is, absolutely no analogs in those parts of mathe-

matical analysis like complex number theory, and so on. These experi-
ences make a fairly convincing case that completely new methods will

be needed for non-linear problems. The classical example for this is a

non-linear partial differential equation for compressible, non-viscous

flow, which led to the discovery of the phenomenon of shocks. In a

problem in which it seemed that only continuous solutions should

exist, discontinuous solutions suddenly play an enormous role, and

without proper regard for these one cannot prove the uniqueness or

the existence of solutions. Furthermore, these irregular solutions be-

have in a very peculiar manner and violate a number of the regulari-

ties which we had reason to believe, from other forms of analysis, were

well established.

Another good example is the phenomenon of turbulence in the

viscous case, where one suddenly discovers that the really important

solutions to a problem which has very high symmetry do not possess

that symmetry. From a heuristic point of view, the important thing

is not to find the simplest solution of the problem, but rather to ana-

lyze statistically certain large families of solutions which have nothing

in common with each other except certain statistical traits. These

prevalent statistical traits are the real roots of the problem and cause

very peculiar singularities in many individual solutions. In all these

cases there is reason to believe that we will have great difficulty in

making analytical progress. The problem of turbulence has been

around for 60 years, and analytical progress in solving it has been very

small. 1

Almost all of the correct mathematical surmises in this area have

come in a very hybrid manner from experimentation. If one could

calculate solutions in certain critical situations like those we have

mentioned, one would probably get much better heuristic ideas. I

1
[ See further von Neumann's Collected Works 5.2-5 and Birkhoff's Hydro-

dynamics.]
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will try to give some indications of this later, but I wanted to point

out that there are large areas in pure mathematics where we are

blocked by a peculiar inter-relation of rigor and intuitive insight, each

of which is needed for the other, and where the unmathematical

process of experimentation with physical problems has produced

almost the only progress which has been made. Computing, which is

not too mathematical either in the traditional sense but is still closer

to the central area of mathematics than this sort of experimentation

is, might be a more flexible and more adequate tool in these areas than

experimentation.

Let me come to the subject proper and first say a few things about

the general traits of computing processes and computing machines.

As you probably know, the main types of computing machines exist-

ing or being discussed or planned at this moment fall into two large

classes: super-analog devices and digital devices. Let me first de-

scribe the analog devices or the wider class, inasmuch as a proper

definition is usually given for the digital class, and analogs are essen-

tially everything else.

Roughly speaking, an analog calculation is one in which you look

at some physical process which happens to have the same mathemati-

cal equations as the process you're interested in, and you investigate

this physical process physically. You do not take the physical process

which you are interested in, because that is your whole reason to cal-

culate. You always look for something which is like it but not exactly

the same thing.

The smallest modification you may make is to use a different scale,

which is possible in certain problems. A slightly larger modification

is to use a different scale and also change certain things which are not

exactly scales. For instance, when you try an aerodynamical experi-

ment in a wind tunnel you scale it, but you scale not only the linear

dimensions but also the velocity of sound. The only way to scale the

velocity of sound is to go to a lower temperature, and there you really

need insight. You must know that the phenomenon you're concerned

with does not depend on temperature. You then discover that it is

easier to try it at a lower temperature and with much smaller dimen-

sions than to carry out the actual process you are interested in. In this

way a wind tunnel for aerodynamical experimentation is in a sense an

analog computing device. This is not a completely fair comparison

because a wind tunnel does a good deal beside computing, but still in

a large range of application (which is certainly not much less than 50

per cent) it is just an analog computing device.

You come very quickly then to cases in which you will not do
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exactly this because it is not possible or not convenient to find a physi-

cal process which has exactly the same equations as the problem you
are interested in. But you may still find, for example, three different

processes which have the same equations as three parts of the problem

and which can be aligned in such a manner that if you perform one

after the other you get the complete answer. From this there is a con-

tinuous transition to situations where you actually break up the

problem mathematically into the elementary operations of arithmetic:

multiplication, addition, subtraction, and division.

[ Von Neumann next discussed physical analog processes for adding,

multiplying, subtracting, and dividing. He covered both electrical and

mechanical analog processes, and the way numbers are represented in

each. He said, "What passes in any axiomatic treatment of mathe-

matics for the elementary operations of arithmetic, the four species

of arithmetical addition, subtraction, etc., need not be the elementary

operations of a computing machine, specifically of an analog com-

puting machine." He explained how a differential analyzer multiplies

two constants by integrating and subtracting. See The Computer and

the Brain 8-5, Collected Works 5.293.]

[ Von Neumann then took up digital machines. He remarked that

in the last 10 years purely digital devices had become relatively much
more important than analog devices. He discussed the components of

digital machines (toothed wheels, electromechanical relays, vacuum
tubes, and nerve cells), the speeds of these components (including both

response time and recovery time), and the need for power amplifica-

tion in these components. He stressed the role of the basic logical

operations (such as sensing a coincidence) in control mechanisms,

including "the most elaborate control mechanism known, namely, the

human nervous system." See The Computer and the Brain 7-10, 30,

39-47. He next turned to the problem of measuring the complexity

of automata.]

It is not completely obvious how to measure the complexity of an

automaton. For computing machines, probably the reasonable way is

to count how many vacuum tubes are involved. This is somewhat

ambiguous, because certain current types of vacuum tubes are in

reality two vacuum tubes inside one envelope, in which case one is

never quite sure which one of the two he is talking about. Another

reason is that a great deal enters into computing machine circuitry

aside from vacuum tubes: electrical equipment like resistors, capaci-

tances, and possibly inductances. Nevertheless, the ratio of these to

the vacuum tubes is tolerably constant, and therefore the number of

tubes is probably a reasonable measure of complexity.
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The largest calculating machine ever used to date contains twenty

thousand vacuum tubes.2 Now the design of this machine is very

different from what any vacuum tube machine of the future is likely

to be like, and so this machine is not quite typical. The computing

machines which most people are thinking about as the computing

machines of the immediate future are to be smaller than this, probably

having 2 to 5 thousand tubes. So, roughly speaking, the order of

magnitude of the complexity of these machines is 10 thousand.

To give you a comparison with natural organisms, the number of

nerve cells in a natural organism can be very different from this. The
number of nerve cells in the human central nervous system has been

estimated to be 10 billion. This number is so large that of course one

has absolutely no experience with such orders of magnitude. It's

terribly difficult to form any reasonable guess as to whether things

which are as complex as the behavior of a human being can or cannot

be administered by 10 billion switching organs. No one knows exactly

what a human being is doing, and nobody has seen a switching organ

of 10 billion units; therefore one would be comparing two unknown
objects.

Let me say a few things which relate more specifically to computing

machines. If you can repeat an elementary act like switching with a

vacuum tube 1 million times per second, that does not mean of course

that you will perform anything that is mathematically relevant 1

million times per second. In estimating how fast a computing machine

can operate, there are all kinds of standards. There's a reasonable

agreement that one ought to count the number of multiplications

performed in a second. By multiplications I mean the multiplication

of two full sized numbers with the precision with which the machine

is running. There is good reason to believe that the precision with

which these things ought to run is of the order of 10, 12, or 14 decimal

digits. A machine of reasonable design in which the elements have a

speed of about 1 million per second will probably multiply somewhere

in the neighborhood of 1 millisecond.

No matter how you organize a computing machine, you simply

cannot count on using it to get 100 per cent efficiency. By that I mean
that it's impossible, with our present information on the subject, to

organize the machine in such a manner that a multiplier which can

multiply in one thousandth of a second will really be fed the necessary

2
[ This is the ENIAC, which is described in Burks, "Electronic Computing

Circuits of the ENIAC" and "Super Electronic Computing Machine," Gold-
stine and Goldstine, "The Electronic Numerical Integrator and Computer
(ENIAC)," and Brainerd and Sharpless, "The ENIAC."]
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data for multiplication. There is a good deal else to be done, namely,

making up your mind what numbers you want, getting the numbers,

disposing of the result, deciding whether you should do the same thing

once again or whether you should do something else, and so on. This

is remarkably similar to paper pushing and adding on paper directly,

except that what you're pushing is not on paper.

From a logical point of view the efficiency is probably of the order

of 1 in 10 or a little better. By that I mean that in any reasonable,

logical description of what you are doing, in a code which corresponds

to prevalent procedures in formal logics, somewhere between a fifth

and a tenth of the orders will be orders to multiply. Since multiplica-

tion is somewhat slower than the other operations, in what most

people think is a well integrated, well balanced machine, you will

probably spend something like one quarter to one half of the time

multiplying. So, if you have a multiplier which can effect a multiplica-

tion in 1 millisecond, you are doing fairly well to get 500 multiplica-

tions per second.

In human computing aided by a desk machine the same number will

be perhaps, 2 multiplications per minute. So the discrepancy, the

acceleration factor could probably be pushed to 100 thousand or

something like that. But to get out of this range we'll probably have

to depart from present techniques quite radically.

From the mathematical point of view the question arises whether

anything could be done with this speed if one had it. I would like to

point out very emphatically that there are very good reasons for

asking for anything the traffic will bear, for this speed, 10 times more,

a hundred times, a thousand times, or a million times. Problems there

are good reasons to solve would justify a great deal more speed than

anyone can think of at this moment. [Von Neumann gave as examples

quantum mechanical calculations on atomic and molecular wave
functions (where the combinatorial difficulties go up very fast as

the number of electrons goes up) , and the problem of turbulence.]

Although it doesn't belong strictly to the subject, let me point out

that we will probably not want to produce vast amounts of numerical

material with computing machines, for example, enormous tables of

functions. The reason for using a fast computing machine is not that

you want to produce a lot of information. After all, the mere fact that

you want some information means that you somehow imagine that

you can absorb it, and, therefore, wherever there may be bottlenecks

in the automatic arrangement which produces and processes this

information, there is a worse bottleneck at the human intellect into

which the information ultimately seeps.
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The really difficult problems are of such a nature that the number of

data which enter is quite small. All you may want to know is a few

numbers, which give a rough curve, or one number. All you may want

in fact is a "yes" or a "no," the answer as to whether something is or

is not stable, or whether turbulence has or has not set in. The point is

that you may not be able to get from an input of, say, 80 numbers to

an output of 20 numbers without having, in the process, produced a

few billion numbers in which nobody is interested. But the process is

such that the volume of numerical material handled first expands and

then contracts again, and, while it starts on a low level, say with 100

numbers, and ends on a low level, say with 10 numbers, its maximum
in between is large, say a few thousand, and the number of successive

generations is large, so that you have handled 10 billion numbers

before you are through. These figures are quite realistic; it would be

easy to find problems which have about this numerical makeup.

You may have noticed that I have already introduced one distinc-

tion, namely, the total numerical material produced in a process. The
other thing which matters is how much you need simultaneously.

This is probably the most vexing problem in modern computing

machine technology. It's also quite a problem from the point of view

of the human organism, namely, the problem of memory. You see,

all these automata really consist of two important parts: the general

switching part (an active part which affects the logical operations

the automaton is supposed to perform), and the memory (which

stores information, chiefly intermediate results which are needed for

a while and are then discarded and replaced by others)

.

In computing machines, the methods to do the active part, the

arithmetical and control circuits, have been well known for years.

The memory questions were much more critical and much more open

throughout the last decade, and are even more critical and more open

now. In the human organism, we know that the switching part is

composed of nerve cells, and we know a certain amount about their

functioning. As to the memory organs, we haven't the faintest idea

where or what they are. We know that the memory requirements of

the human organism are large, but on the basis of any experience

that one has with the subject, it's not likely that the memory sits in

the nervous system, and it's really very obscure what sort of thing it

is.
3 Hence in both the computer and the human nervous system, the

dynamic part (the switching part) of the automaton is simpler than

the memory.

3
[ This point is discussed further in The Computer and the Brain 63-69.]
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[ Von Neumann next discussed how to measure memory capacity.

He suggested using the logarithm (to the base two) of the configura-

tion number (i.e., the number of alternatives). See Collected Works
5.341-342. He then estimated the memory capacity of an ordinary

printed page to be about 20 thousand units, and remarked that this

is about the memory capacity of the digital computers under con-

sideration at that time.]

This shows where the real price of speed lies. A large modern com-

puting machine is a very expensive object, an object which it takes

a long time to build and which is a very tricky thing after you've got

it. Yet it is supposed to get along on a memory which is equivalent to

a printed page! When such a machine is properly run it will, in half

an hour, do the work which a computing group of 20 people would do

in about 2 or 3 years. Yet it's supposed to get along on a memory of

one printed page. Imagine that you take 20 people, lock them up in

a room for 3 years, provide them with 20 desk multipliers, and in-

stitute this rule: during the entire proceedings all of them together

may never have more than one page written full. They can erase any

amount, put it back again, but they are entitled at any given time

only to one page. It's clear where the bottleneck of this process lies.

The planning may be difficult, input and output may be cumbersome,

and so on, but the main trouble is that it has a phenomenally low

memory for the computing to be done. The whole technique of com-

puting will be completely distorted by this modus operandi.

This is an extremely abnormal economy. By going to high speed,'-

you cut yourself off from the efficient methods of storing information

and push yourself into an inefficient one. A thousand-number com-

puter memory is a very large object, an object which it took years

to develop ; all existing types are very much in an experimental stage

at this moment, and none of them are small or cheap. Yet they are

the equivalent of one printed page. The reason why one is forced to

use these memories is this. [Each multiplication requires certain num-
bers from the memory and the product often goes to the memory.

There are other arithmetic operations, and these require access to

the memory. The orders to control these arithmetic operations come

from the memory.] One probably needs anywhere between five and

eight accesses to the memory for each multiplication. Thus it is un-

reasonable to get a millisecond multiplier unless you have a memory
to which you can get access in something of the order of a tenth of

a millisecond. Now to get access to a printed book takes seconds, to

get access to anything punched or written on paper takes a fraction

of a second. Since one needs an access time of something like one
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ten-thousandth of a second, one is forced out of these efficient tech-

niques of storing information, into a highly inefficient and expensive

technique.

In comparing artificial with natural automata there is one very

important thing we do not know: whether nature has ever been sub-

ject to this handicap, or whether natural organisms involve some

much better memory device. That the secondary memory devices

which humans have developed, namely, libraries, etc., are so vastly

more efficient than this, is some reason to suspect that natural mecha-

nisms for memory may also be quite as clumsy as the high speed

memories with which we think we have to operate. But we know
practically nothing about this.

Let me, before I close today, mention one more thing. In any fast

machine the memory you need is characterized by two data: the

capacity and the access time. [Von Neumann said that at that mo-

ment there was no technique for building a memory with both an

adequate capacity and a sufficiently good access time. What is done

is to construct a hierarchy of memories. The first memory has the

required speed and is as large as you can make it, but it is not large

enough. The second memory is much larger, but slower. Numbers
are transferred from the second memory to the first memory when
needed. There may be a third memory which is larger but slower, and

so on. An electrostatic memory tube, a magnetic tape, and a card

file would constitute such a hierarchy of memories. See The Computer

and the Brain 33-37.]



Second Lecture

RIGOROUS THEORIES OF CONTROL
AND INFORMATION

Theory of information: The strict part. The concept of information. The
corresponding mathematical-logical concept of sets and partitions.

Close connection with formal logics. Alternative approach by way of

model-automata. Common traits in these two approaches: All-or-none char-

acter. The work which connects these two approaches.

Methods of describing automata : Syntheses from components or treatment

as a whole.

Synthetic approach: Nature of the element-organs. Their similarity to

neurons. The program of McCulloch and Pitts: Formal neural networks. Their

main result.

Treatment as a whole: Turing's theory of automata. The relationship of

an automaton and of the mathematical problems that can be solved with its

help. The concept of a universal automaton. Turing's main result.

Limitations of the McCulloch-Pitts and Turing automata. Input and out-

put organs. Generalizations of these. Interpretation as sensor and motor

organs.

[ Von Neumann said that there are two parts to information theory:

the rigorous and the probabilistic. The probabilistic part is probably

more important for modern computing machinery, but the rigorous

part is a necessary preliminary to it. The rigorous part of information

theory is just a different way of dealing with formal logics.]

[ He then explained some of the basic ideas of formal logics. He dis-

cussed briefly truth-functional connectives such as "and," "not,"

"if . . . then," and "not both," and their interdefinability. He ex-

plained the idea of a variable and the quantifiers "all" and "some."

He concluded: "If you have this machinery you can express anything

that is dealt with in mathematics; or that is dealt with in any subject,

for that matter, as long as it's dealt with sharply."]

I am not going to go into this subject, because in order to make a

theory of information, another machinery which is quite closely re-

lated to this but looks somewhat different, is more cogent. This is con-

42
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nected with the work of McCulloch and Pitts, 1 on the one hand, and

the logician Turing on the other.2 Both endeavors in the subject

replace formal logics as indicated here and as classically pursued, by

the discussion of certain fictitious mechanisms or axiomatic paper

automata, which are merely outlined, but which nobody is particularly

concerned to build. Both of them show that their fictitious mecha-

nisms are exactly co-extensional with formal logics; in other words,

that what their automata can do can be described in logical terms

and, conversely, that anything which can be described rigorously in

logical terms can also be done by automata. [Von Neumann was as-

suming that a finite McCulloch-Pitts neuron net is supplied with an

infinite blank tape. The result to which he referred is the equivalence

of Turing computability, X-definability, and general recursiveness.

See Turing's "Computability and X-Definability."]

I'm going to describe both the work of McCulloch and Pitts and

the work of Turing, because they reflect two very important ways to

get at the subject: the synthetic way, and the integral way. McCulloch

and Pitts described structures which are built up from very simple

elements, so that all you have to define axiomatically are the ele-

ments, and then their combination can be extremely complex. Turing

started by axiomatically describing what the whole automaton is

supposed to be, without telling what its elements are, just by describ-

ing how it's supposed to function.

The work of McCulloch and Pitts was definitely meant as a simple

mathematical, logical model to be used in discussions of the human
nervous system. That it wound up with something which is actually

an equivalent of formal logics is very remarkable and was part of the

point McCulloch and Pitts wanted to drive home, but only part of

that point. Their model also has a meaning which concerns me at this

moment a little less, but about which I will tell, without immediately

stating where it ties in to formal logics. They wanted to discuss

neurons. They took the position that they did not want to get tied up

in the physiological and chemical complexities of what a neuron really

is. They used what is known in mathematics as the axiomatic method,

stating a few simple postulates and not being concerned with how
nature manages to achieve such a gadget.

1
[ McCulloch and Pitts, "A Logical Calculus of the Ideas Immanent in

Nervous Activity. " See also Sees. 1-7 of von Neumann, "Probabilistic Logics
and the Synthesis of Reliable Organisms from Unreliable Components, " Burks
and Wright, "Theory of Logical Nets," and Kleene, "Representation of Events
in Nerve Nets and Finite Automata."]

2
[ Turing, "On Computable Numbers, with an Application to the Entschei-

dungsproblem."]
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They went one step further. This has been emphasized very strongly

by those who criticize their work, although it seems to me that the

extent to which they went further can be justified. They said that they

did not want to axiomatize the neuron as it actually exists, but they

wanted to axiomatize an idealized neuron, whictiJs-jjiuch simpler

than the_rSxl,_one. They believed that the extremely amputated,

simplified, idealized object which they axiomatized possessed the

essential traits bf the neuron, and that all else are incidental complica-

tions, which in a first analysis are better forgotten. Now, I am quite

sure that it will be a long t ime before this point is generally agreed to

by everybody, if ever; namely, whether or not what one overlooks

in this simplification had really better be forgotten or not. But it's

certainly true that one gets a quick understanding of a part of the

subject by making this idealization.

The definition of what we call a neuron is this. One should perhaps

call it a formal neuron, because it certainly is not the real thing, though

it has a number of the essential traits of the real thing. A neuron will

be symbolically designated by a circle, which symbolizes the body of

the neuron, and a line branching out from the circle, which symbolizes

the axon of the neuron. An arrow is used to indicate that the axon

of one neuron is incident on the body of another. A neuron has two

states: it's excited or not. As to what excitation is, one need not tell.

Its main characteristic is its operational characteristic and that has a

3ertain circularity about it: its main trait is that it can excite other

neurons. Somewhere at the end of an involved network of neurons

the excited neuron excites something which is not a neuron. For

instance, it excites a muscle, which then produces physical motion; or

it excites a gland which can produce a secretion, in which case you get

a chemical change. So, the ultimate output of the excited state really

produces phenomena which fall outside our present treatment. These

phenomena will, for the sake of the present discussion, be entirely

disregarded.

[Von Neumann stated the axioms governing the interaction of

neurons. Following McCulloch and Pitts he assumed a uniform delay

and for the time being disregarded "the important phenomenon of

fatigue, the fact that after a neuron has been excited it is not usable

for a while. " Fatigue plays an important role in the functioning of an

organism (see p. 48 below), but in spite of fatigue one can get con-

tinuous action by using a chain of neurons, each feeding its successor.

Von Neumann defined the threshold of a neuron and introduced

inhibitory synapses, symbolized by a circle (instead of an arrowhead).]

[Von Neumann next presented what he called "the important
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result of McCulloch and Pitts." Imagine a black box with a number

of inputs and a single output. Select two times, ti and t 2 . Specify

which patterns of inputs from time t\ to time U are to produce an

output and which are not.] No matter how you formulate your condi-

tions, you can always put a neural network in the box which will

realize these conditions, which means that the generality of neural

systems is exactly the same as the generality of logics. The fact that

something has been done with the system means not more and not

less than you know what you are talking about, that you can state it

in a finite number of words unambiguously and rigorously. I will not

attempt to give the proof, which like all proofs in formal logics is not

quite easy to render. [We will sketch the proof very briefly. It follows

from the construction that von Neumann referred to that every switch-

ing function (truth function, Boolean function) can be realized by a

neural network with some fixed delay. A cyclic neural memory of

arbitrary finite capacity can be attached to this switching net. When
this composite network is augmented by an infinite tape, the result is

a Turing machine. Moreover, corresponding to each Turing machine

M , there is a network of this kind which computes the same number

as M.]

[ Von Neumann showed how to construct a few sample networks.

The first is a network in which a dominates 6, b dominates c, but c

dominates a, shown in Figure 1. Each neuron is excited (fires) if it is

stimulated on its excitatory input (the input with an arrow) but is

not stimulated on its inhibitory input (the input with a small circle)

.

Hence if a and b are both stimulated, output a will be active but not

/5; if b and c are both stimulated, output 0 will be active but not 7;

while if a and c are both stimulated, output 7 will be active but not a.

Von Neumann used this network to illustrate a certain point. People

have made statements about the non-quantitative character of

human behavior, which statements seem to imply that in any quanti-

tative mechanism, if a is stronger than b and b is stronger than c,

then a is stronger than c. But in the above neural network a is stronger

than b and b is stronger than c, while c is stronger than a.]

[ Von Neumann then synthesized a number of other networks

:

simple memories, counters, and an elementary learning circuit. These

are approximately the circuits of Collected Works 5.342-345. The
learning circuit has two inputs, a and 6. It counts the number of times

a stimulus of a is followed by a stimulus of b. When this number
reaches 256, the circuit emits a pulse whenever b is stimulated, inde-

pendently of whether a is stimulated or not.] You see that you can

produce circuits which look complicated, but which are actually quite



4G THEORY OF SELF-REPRODUCING AUTOMATA

simple from the point of view of how they are synthesized and which

have about the same complexity that they should have, namely, the

complexity that grammar has. It is no more difficult to make this

drawing up than to make up a sentence which describes what you

want, and the essence of the result of McCulloch and Pitts is that

there really isn't much difference between the two things. The rigorous

verbal description is co-extensive with the description in terms of

relay organs.

May I point out what follows from this from a philosophical point

of view, and what does not follow. It certainly follows that anything

that you can describe in words can also be done with the neuron

method. And it follows that the nerves need not be supernaturally

clever or complicated. In fact, they needn't be quite as clever and

complicated as they are in reality, because an object which is a con-

siderably amputated and emasculated neuron, which has many fewer

attributes and responds in a much more schematic manner than a

neuron, already can do everything you can think up.

What is not demonstrated by the McCulloch and Pitts result is

equally important. It does not prove that any circuit you are designing

in this manner really occurs in nature. It does not follow that the other

functions of the nerve cell which have been dropped from this descrip-

tion are not essential. It does not follow that there is not a considerable

problem left just in saying what you think is to be described. Let me
try to put this in another way. If you consider certain activities of the

human nervous system, you find that some of them are such that all

parts of them can be described, but one is flabbergasted by the totality

of what has to be described.

Suppose you want to describe the fact that when you look at a

triangle you realize that it's a triangle, and you realize this whether

it's small or large. It's relatively simple to describe geometrically

what is meant: a triangle is a group of three lines arranged in a certain

manner. Well, that's fine, except that you also recognize as a triangle

something whose sides are curved, and a situation where only the

vertices are indicated, and something where the interior is shaded and

the exterior is not. You can recognize as a triangle many different

things, all of which have some indication of a triangle in them, but

the more details you try to put in a description of it the longer the

description becomes.

In addition, the ability to recognize triangles is just an infinitesimal

fraction of the analogies you can visually recognize in geometry,

which in turn is an infinitesimal fraction of all the visual analogies you

can recognize, each of which you can still describe. But with respect
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to the whole visual machinery of interpreting a picture, of putting

something into a picture, we get into domains which you certainly

cannot describe in those terms. Everybody will put an interpretation

into a Rorschach test, but what interpretation he puts into it is a

function of his whole personality and his whole previous history, and

this is supposed to be a very good method of making inferences as to

what kind of a person he is.

In fine, now, all of this may seem a little arbitrary and accidental,

but the basic fact involved is this, that our brains are exceedingly

complicated. About one fifth of the brain is a visual brain, which, as

far as we know, does nothing except make decisions about visual

analogies. So, using the figures we have, which are not very good, but

which are probably all right for an orientation, we conclude that ap-

parently a network of about 2 billion relays does nothing but deter-

mine how to organize a visual picture. It is absolutely not clear a

priori that there is any simpler description of what constitutes a

visual analogy than a description of the visual brain.

Normally, a literary description of what an automaton is supposed

to do is simpler than the complete diagram of the automaton. It is

not true a priori that this will always be so. There is a good deal in

formal logics to indicate that the description of the functions of an

automaton is simpler than the automaton itself, as long as the auto-

maton is not very complicated, but that when you get to high compli-

cations, the actual object is simpler than the literary description.

I am twisting a logical theorem a little, but it's a perfectly good

logical theorem. It's a theorem of Godel that the next logical step, the

description of an object, is one class type higher than the object and

is therefore asymptotically [?] infinitely longer to describe. I say that

it's absolutely necessary; it's just a matter of complication when you

get to this point. I think that there is a good deal of reason to suspect

that this is so with things which have this disagreeably vague and

fluid impression (like "What is a visual analogy?"), where one feels

that one will never get to the end of the description. They may easily

be in this condition already, where doing a thing is quicker than

describing it, where the circuit is more quickly enumerated than a

total description of all its functions in all conceivable conditions.

The insight that a formal neuron network can do anything which

you can describe in words is a very important insight and simplifies

matters enormously at low complication levels. It is by no means
certain that it is a simplification on high complication levels. It is

perfectly possible that on high complication levels the value of the

theorem is in the reverse direction, that it simplifies matters because
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it guarantees the reverse, namely, that you can express logics in

terms of these efforts and the converse may not be true. [Von Neu-

mann returned to this point on p. 51, after his discussion of Turing

machines.]

[ Von Neumann next discussed two cases in which circuits of ideal-

ized neurons do not seem to provide an explanation of how the nervous

system actually performs a given function. The first case concerns the

transmission by a nerve of a continuous number which represents some

quantity such as blood pressure. The nerve does this by emitting

pulses at a frequency which is a monotone function of the blood pres-

sure. This behavior is explained in terms of neural fatigue: after a

neuron responds, it is unable to respond for a certain period, called

the refractory period, and the stronger the next stimulus the sooner

it responds. He then raised the question "Why has the digital notation

never been used in nature, as far as we know, and why has this pulse

notation been used instead ?" and said that this was the kind of ques-

tion he was interested in. He suggested an answer: that the frequency

modulation scheme is more reliable than the digital scheme. See

Section 1.1.2.3 below, The Computer and the Brain 77-79, and Collected

Works 5.306-308 and 5.375-376.]

[ The second case in which circuits of idealized neurons do not seem

to provide an explanation of how the nervous system actually per-

forms a given function concerns memory. Von Neumann had earlier

synthesized memory circuits from idealized neurons and he remarked

that such memory circuits could be arbitrarily large. But he thought

it probable that this is not the major mechanism used for memory in

the nervous system.] This is not the way to make a memory for the

simple reason that to use a switching organ like a neuron, or six to a

dozen switching organs, as you actually would have to use because of

fatigue, in order to do as small a thing as remember one binary digit,

is a terrible waste, because a switching organ can do vastly more than

store. In computing machines the classical example of a machine in

which the switching organs were used to remember numbers is the

ENIAC, an enormous gadget which has about 20 thousand vacuum
tubes in it. The ENIAC is about five times larger than later machines

which will presumably be far more efficient; it is an excellent machine

in many ways, but it has one phenomenal shortcoming, namely, a

very small memory. It has only a memory of 20 decimal numbers at

points where it matters; in spite of this it is enormous. The reason is

that vacuum tubes, in other words, switching organs, are used for

that memory. All improvements on this machine postulate that some

other components than standard vacuum tubes will be used for

memory.
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The memory requirements of the human nervous system are prob-

ably very large. Estimates have been made and they are of the order

of 1016 binary digits. I will not attempt to justify this estimate; a great

deal can be said for any count. I think there is a good deal of reason to

believe that 1010 switching organs, which is about what we have, is

probably not the right order of magnitude for storing the kind of

memory that we use, and that it's probably best to admit that we
simply do not know where the memory is. One can make all kinds of

statements about it. One can surmise thai the memory consists in a

change of the synapses of the nerve cells, which is not decided by

design. I don't know whether there is any good evidence for this, but

I rather think there is not. You may suspect that the nerve cells

contain a lot else than the switching trait, and that the memory sits

there. It may be so, but I think that we simply know nothing. It may
well be that the memory organs are of a completely different nature

than the neurons.

The main difficulty with the memory organ is that it appears to be

nowhere in particular. It is never very simple to locate anything in

the brain, because the brain has an enormous ability to re-organize.

Even when you have localized a function in a particular part of it, if

you remove that part, you may discover that the brain has reorganized

itself, reassigned its responsibilities, and the function is again being

performed. The flexibility of the brain is very great, and this makes

localization difficult. I suspect that the memory function is less

localized than anything else. [Cf. The Computer and the Brain 63-68.]

I wanted to mention these two things [fatigue and memory] as very

obvious lacunae in the McCulloch and Pitts approach to the nervous

system. I want to talk next about the approach of Turing. In the

McCulloch and Pitts theory the conclusion was that actual automata,

properly described and axiomatized, are equivalent to formal logics.

In Turing's theory the conclusion is the reverse. Turing was interested

in formal logics, not in automata. He was concerned to prove certain

theorems about an important problem of formal logics, the so-called

Entscheidungsproblem, the, problem of decision . The problem is to

determine, for a class of logical expressions or propositions, whether

there is a mechanical method for deciding whether an expression of

this class is true or false. Turing's discussion of automata was really

a formal, logical trick to deal with this problem in a somewhat more

transparent and more consistent way than it had been dealt with

before.

[ Von Neumann then outlined Turing's definition of an automaton.

Whereas McCulloch and Pitts started with components or elements,

Turing started with states. At any time the automaton is in one of a
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finite number of states. "The outside world" is a tape. The automaton

senses one square of the tape, and it can change the contents of the

square and move the tape one square to the left or right. A dictionary

specifies, for each state and each tape symbol, what the next state will

be and what will be done to the tape. The tape has a distinguished

square. A finite program may be placed on the tape initially. The
binary number computed by the automaton is recorded in alternate

squares, starting with the distinguished square.]

[ Von Neumann next described Turing's result concerning universal

automata. There is a universal automaton A with the following prop-

erties: For each automaton A there is a sequence of instructions IA

such that for any sequence of instructions /, A supplied with both

instructions IA and / computes the same number as is computed by A
supplied with instructions /.] A is able to imitate any automaton,

even a much more complicated one. Thus a lesser degree of complexity

in an automaton can be compensated for by an appropriate increase ot

complexity of the instructions. The importance of Turing's research

is just this: that if you construct an automaton right, then any addi-

tional requirements about the automaton can be handled by suffi-

ciently elaborate instructions. This is only true if A is sufficiently

complicated, if it has reached a certain minimum level of complexity.

In other words, a simpler thing will never perform certain operations,

no matter what instructions you give it; but there is a very definite

finite point where an automaton of this complexity can, when given

suitable instructions, do anything that can be done by automata at

all.

[Von Neumann then explained how the universal automaton A
simulates an arbitrary automaton A. The instructions IA contain a

representation of the automaton A in the form of a dictionary, which

tells, for each state of A and each tape symbol, the next state of A
and what is to be done to the tape. The universal automaton A has

the power to read any such dictionary and act on it. A writes on its

tape, in sequence, the successive states of A and what is produced on

the tape of A.] I will not go further in giving the details of this. I

have gone into it to the point to which I did in order to point out that

here, for the first time, one deals with something which has the at-

tribute of universality, which has the ability to do anything that any-

body can do. You also see that there is no vicious circle in it, because

of the manner in which the extra complexity is brought in (by giving

more elaborate instructions). You also see that the operation which

ultimately leads to universality is connected with a rigorous theory of
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how one describes objects and a rigorous routine of how to look up

statements in a dictionary and obey them.

The formal logical investigations of Turing went a good deal further

than this. Turing proved that there is something for which you cannot

construct an automaton; namely, you cannot construct an automaton

which can predict in how many steps another automaton which can

solve a certain problem will actually solve it. So, you can construct an

automaton which can do anything any automaton can do, but you

cannot construct an automaton which will predict the behavior of any

arbitrary automaton. In other words, you can build an organ which

can do anything that can be done, but you cannot build an organ

which tells you whether it can be done.

This is connected with the structure of formal logics and is specifi-

cally connected with a feature which I will not attempt to discuss,

but which I would like to mention in the proper jargon for those of

you who are familiar with modern formal logics. It is connected with

the theory of types and with the results of Godel. The feature is just

this, that you can perform within the logical type that's involved

everything that's feasible, but the question of whether something is

feasible in a type belongs to a higher logical type. It's connected with

the remark I made earlier (pp. 47-48) : that it is characteristic of objects

of low complexity that it is easier to talk about the object than produce

it and easier to predict its properties than to build it. But in the com-

plicated parts of formal logic it is always one order of magnitude

harder to tell what an object can do than to produce the object. The
domain of the validity of the question is of a higher type than the

question itself.

[ This is the end of von Neumann's Second Lecture. I will add a

commentary on his last two paragraphs, beginning with some general

remarks on Turing machines.

A Turing machine is basically a finite automaton with an indefi-

nitely extendible tape. But there are many different ways of using a

Turing machine. Let the squares of the tape be numbered 0, 1, 2,

3, • • •
, with even numbered squares reserved for working space and

odd numbered squares reserved for the program or problem statement

(if there is one) and for the answer. Let the answer symbols be zero

and one, in addition to the blank; these could, of course, be coded

sequences of two basic symbols, a blank and a mark. Assume finally

that the machine writes the answer digits (zero and one) in successive

answer squares.

A "concrete Turing machine" is a Turing machine which has a
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finite "program" or problem statement on its tape initially. An
"abstract Turing machine' ' is the class of all concrete Turing machines

which contain a given finite automaton. We can think of an abstract

Turing machine as a finite automaton with an indefinitely extendible

blank tape on which any program or problem may be placed initially.

Concrete Turing machines may be divided into two classes: the

circular and the circle-free. A "circular" machine prints a finite se-

quence of binary digits and "halts." A "circle-free" machine continues

to print binary digits in alternate squares forever; we will speak of it

as computing an infinite sequence.

Von Neumann discussed above a universal Turing machine which

consists of a finite automaton A and an indefinitely extendible tape.

A universal Turing machine is an abstract Turing machine which

computes every sequence computed by Turing machines. More
precisely, for each concrete Turing machine with finite automaton A
and program /, there is a program IA such that machine A with pro-

grams IA and / computes the sequence computed by machine A with

program /. A universal Turing machine can be characterized in

another way. Let r be the class of finite and infinite sequences com-

puted by concrete Turing machines. Then, every sequence of T is

computed by the abstract Turing machine A + IA + /, where IA and

/ vary over all programs. Since the concatenation of two programs is

a program, every sequence of r is computed by the abstract Turing

machine A + /, where / varies over all programs.

A "decision machine" for a given class of questions is an abstract

Turing machine which, when given a question of that class, prints

a one if the answer to the question is "yes" and a zero if the answer

to the question is "no."

The "halting problem" is the problem of deciding whether an

arbitrary concrete Turing machine is circular (will halt sometime) or

circle-free. Turing showed that the halting problem is undecidable,

that is, that there is no decision machine for halting. 3 The proof is

given below in Sec. 1.6.3.2 of Part II. Turing proved as a corollary to

this that there is no decision machine for deciding whether an arbi-

trary concrete Turing machine will ever print a given symbol (for

example, a zero). Since both halting and printing a given symbol are

aspects of the behavior of a Turing machine, it follows from Turing's

results that automata behavior is not completely predictable by

automata. As von Neumann put it above, "you cannot construct an

3
[ Turing, "On Computable Numbers, with an Application to the Entschei-

dungsproblem," Sec. 8.]
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automaton which will predict the behavior of any arbitrary autom-

aton."

Concrete Turing machines can be enumerated and thereby placed

in one to one correspondence with the non-negative integers. Consider

all these machines and let the variable "t" range over the integers

representing them. We define the number theoretic function n(t) as

the number of steps which machine t takes to print its first zero. If

machine t never prints a zero, then n(t) is defined to be zero.

Note that a sequence of n ones followed by a zero can be inter-

preted as the integer n. This leads to the question: Is there an abstract

Turing machine which can compute n(t) for any t? It follows immedi-

ately from Turing's corollary that there is not, for if we could com-

pute n(t) we could decide whether or not machine t ever prints a zero.

I think that this is what von Neumann had in mind when he said

"Turing proved that you cannot construct an automaton which can

predict in how many steps another automaton which can solve a

certain problem will actually solve it."

In the last paragraph of his Second Lecture von Neumann referred

to a theorem of Godel "that you can perform within the logical type

that's involved everything that's feasible, but the question of whether

something is feasible in a type belongs to a higher logical type."

Since I knew of no such theorem by Godel I found this reference

puzzling, as well as the earlier reference to Godel (p. 47) and a related

reference in von Neumann's Hixon Symposium paper, "The General

and Logical Theory of Automata" (Collected Works 5.310-311). I

wrote Professor Kurt Godel to see whether he could throw any light

on it. His answer gives, I think, the most plausible explanation of the

reference, and so I include the relevant parts of our correspondence,

with minor editing.

I wrote to Professor Godel as follows: "I am engaged in editing two

of John von Neumann's uncompleted manuscripts on the theory of

automata. In one of these, a series of lectures he delivered at the

University of Illinois in 1949, he makes a reference to your work which

I have been unable to figure out. Since there is the possibility he may
have discussed this point with you, I am taking the liberty of writing

you about it.

"The story begins with Johnny's Hixon Symposium talk at Pasa-

dena in 1948. He discusses there the problem of giving a rigorous

description of a visual analogy. In recognizing visual patterns, the

human eye and nervous system function as a finite automaton with

a certain behavior. Von Neumann seems to suggest that possibly the

simplest way to describe the behavior of this finite automaton is to
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describe the structure of the automaton itself. This is certainly plausi-

ble. But he then expresses the point in a way I do not understand:

'It is not at all certain that in this domain a real object might not

constitute the simplest description of itself. That is, any attempt to

describe it by the usual literary or formal-logical method may lead to

something less manageable and more involved. In fact, some results in

modern logic would tend to indicate that phenomena like this have to

be expected when we come to really complicated entities/ The under-

lined passage seems to refer to your work. I enclose a copy of the full

context.

"In his Illinois lectures, given in 1949, Johnny seems to be making
the same point, namely, that the simplest way to describe accurately

what constitutes a visual analogy is to specify the connections of the

visual part of the brain. He then proceeds to say that there is a good

deal in formal logic which indicates that when an automaton is not

very complicated the description of the functions of that automaton

is simpler than a description of the automaton itself but that the

situation is reversed with respect to complicated automata. His

reference to you then appears explicitly. He says, T am a little twisting

a logical theorem, but it's a perfectly good logical theorem. It's a

theorem of Godel that the next logical step, the description of an

object, is one class type higher than the object and is therefore asymp-

totically [?] infinitely longer to describe.'

"He returns to this point later after discussing Turing machines

and mentioning Turing's result about the undecidability of the halting

problem. He then says that all of this is connected with the theory of

types and with your results. The recording transcript is mangled at

this point and I will reconstruct it as best I can. Tt is connected with

the theory of types and with the results of Godel. The feature is just

this, that you can perform within the logical type that's involved

everything that's feasible but the question of whether something is

feasible in a type belongs to a higher logical type. It's connected with

the remark I made earlier: that it is characteristic of objects of low

complexity that it is easier to talk about the object than produce it

and easier to predict its properties than to build it. But in the com-

plicated parts of formal logic it is always one order of magnitude

harder to tell what an object can do than to produce the object. The
domain of the validity of the question is of a higher type than the

question itself.' I enclose copies of the relevant pages of the Illinois

lectures.

"It is easy to regard the description of an object as of one type level

higher than the object itself, but beyond this I do not see what von
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Neumann has in mind. Two possibilities occured to me but both give

a result opposite to that which Johnny needs. One may regard a Godel

number as a description of a formula. However, in some cases at least,

the Godel number of a formula may be described in fewer symbols

than the formula, else the self-referring undecidable formula could

not exist. 4 The other possibility concerns a theorem in your 1936

paper, "tlber die Lange der Beweise. ,, Given a system S and a larger

system Si . The theorem says that for every recursive function F,

there exists a sentence which is provable in both systems and such

that the shortest proofs in these two systems satisfy the inequality

that the Godel number of the proof in the smaller system is larger than

the recursive function F applied to the Godel number of the proof in

the larger system. This fits everything that von Neumann says except

that the result seems to go in the opposite direction: namely, the

higher the type the shorter the proof.

"I would appreciate very much any light that you could throw on

these puzzling passages of von Neumann."
Professor Godel replied as follows. "I have some conjecture as to

what von Neumann may have had in mind in the passages you quote,

but since I never discussed these matters with him it is only a guess.

"I think the theorem of mine which von Neumann refers to is not

that on the existence of undecidable propositions or that on the lengths

of proofs but rather the fact that a complete epistemological descrip-

tion of a language A cannot be given in the same language A , because

the concept of truth of sentences of A cannot be defined in A . It is this

theorem which is the true reason for the existence of undecidable prop-

ositions in the formal systems containing arithmetic. I did not, how-

ever, formulate it explicitly in my paper of 1931 but only in my Prince-

ton lectures of 1934. 5 The same theorem was proved by Tarski in his

paper on the concept of truth published in 1933 in Act. Soc. Sci. Lit.

Vars., translated on pp. 152-278 of Logic, Semantics, and Metamaihe-

matics*

"Now this theorem certainly shows that the description of what a

mechanism is doing in certain cases is more involved than the descrip-

4
[ See Godel's "Uber formal unentscheidbare Satze der Principia Mathema-

tica und verwandter Systeme I." The undecidable formula has the Godel
number n and says 'The formula whose Godel number is n is not a theorem.'

'

Thus, via Godel's coding, the undecidable formula refers to itself. It is un-
decidable in the sense that neither it nor its negation is a theorem of the system
Godel is studying.]

5
[ Godel, "On Undecidable Propositions of Formal Mathematical Sys-

tems. "]

6
[ The exact reference to Tarski 's paper was added later.]
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tion of the mechanism, in the sense that it requires new and more

abstract primitive terms, namely higher types. However, this implies

nothing as to the number of symbols necessary, where the relationship

may very well be in the opposite direction, as you rightly remark.

"However, what von Neumann perhaps had in mind appears more

clearly from the universal Turing machine. There it might be said

that the complete description of its behavior is infinite because, in

view of the non-existence of a decision procedure predicting its be-

havior, the complete description could be given only by an enumera-

tion of all instances. Of course this presupposes that only decidable

descriptions are considered to be complete descriptions, but this is in

line with the finitistic way of thinking. The universal Turing machine,

where the ratio of the two complexities is infinity, might then be con-

sidered to be a limiting case of other finite mechanisms. This immedi-

ately leads to von Neumann's conjecture.
,,

]



Third Lecture

STATISTICAL THEORIES OF
INFORMATION

Theory of information: Probabilistic part. Relationship of strict and of

probabilistic logics. Keynes' interpretation of probability theory. Exemplifi-

cation of the relationship of logics to strict classical mechanics on the one

hand, and to statistical mechanics on the other. Corresponding situation in

quantum mechanics.

The mathematical aspects of the transition from strict to probabilistic

logics. Analysis and combinatorics.

The thermodynamical aspect: Information and entropy.

The theory of Szilard.

The theory of Shannon.

Additional remarks on the thermodynamical nature of the internal balance

of a computing machine.

I conclude my remarks about strict and rigorous questions of infor-

mation at this point and pass on to statistical considerations involving

information. That this is the important thing in dealing with automata

and their functions is fairly evident, for two reasons at least. The first

of these reasons may seem somewhat extraneous and accidental, al-

though I think it is not, but the second reason is certainly not.

The first reason is that in no practical way can we imagine an autom-

aton which is really reliable. If you axiomatize an automaton by
telling exactly what it will do in every completely denned situation

you are missing an important part of the problem. The axiomatization

of automata for the completely denned situation is a very nice exercise

for one who faces the problem for the first time, but everybody who
has had experience with it knows that it's only a very preliminary

stage of the problem.

The second reason for the importance of statistical considerations

in the theory of automata is this. If you look at automata which have

been built by men or which exist in nature you will very frequently

notice that their structure is controlled only partly by rigorous re-

quirements and is controlled to a much larger extent by the manner
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in which they might fail and by the (more or less effective) precau-

tionary measures which have been taken against their failure. And to

say that they are precautions against failure is to overstate the case,

to use an optimistic terminology which is completely alien to the sub-

ject. Rather than precautions against failure, they are arrangements

by which it is attempted to achieve a state where at least a majority

of all failures will not be lethal. There can be no question of eliminat-

ing failures or of completely paralyzing the effects of failures. All we
can try to do is to arrange an automaton so that in the vast majority

of failures it can continue to operate. These arrangements give pallia-

tives of failures, not cures. Most of the arrangements of artificial and

natural automata and the principles involved therein are of this sort.

To permit failure as an independent logical entity means that one

does not state the axioms in a rigorous manner. The axioms are not

of the form: if A and B happen, C will follow. The axioms are always of

this variety: if A and B happen, C will follow with a certain specified

probability, D will follow with another specified probability, and so

on. In other words, in every situation several alternatives are per-

mitted with various probabilities. Mathematically it is simplest to-

say that anything can follow upon anything in accordance with a

probability matrix. You may put your question in this manner: If A
and B have happened, what is the probability that C will follow? This

probability pattern gives you a probabilistic system of logics. Both

artificial and natural automata should be discussed in this system as

soon as there is any degree of involvement. 1 I will come later to the

question as to why it is just complexity which pushes one into this

kind of axiomatization instead of a strict one. 2

Now this inclines one to view probability as a branch of logics, or

rather, to view logics affected with probability as an extension of

ordinary rigorous logics. The view that probability is an extension of

logics is not trivial, is not generally accepted, and is not the major

interpretation of probability. It is, however, the classical interpreta-

tion. The competing interpretation is the frequency interpretation,

the attitude that logic is completely rigorous, and with respect to

phenomena about which you are not completely informed, you can

only make statements of frequencies.

This distinction was, I think, quite clear to Laplace, who pointed

1
[ See von Neumann's "Probabilistic Logics and the Synthesis of Reliable

Organs from Unreliable Components" for a detailed treatment of automata
from this point of view.]

2
[ For a given probability of malfunction of a component, the more complex

the automaton the more likely it is that a lethal failure will occur.]
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out that there are two possible attitudes toward probability: the fre-

quency and the logical. 3 In more recent times the distinction was em-

phasized strongly and made the basis of a system by the economist

Keynes, who wrote his thesis on probability. 4 He analyzed this ques-

tion in considerable detail and showed that, aside from the more con-

ventional frequency viewpoint about probability, the logical one also

exists. But he made no attempt to separate strict logics and probabil-

ity and simply said that, if you view a sequence of events A and B,

they have the quantitative characteristic, "the probability with which

B follows A" The only tie to strict logics is that when the probability

is one you have an implication, and when the probability is zero you

have an exclusion, and when the probability is close to one or close to

zero you can still make those inferences in a less rigorous domain.

There are undeniable weaknesses of the logical position. In some

ways of looking at probability it is opportune not to identify zero

probability with absurdity. Also, it is not quite clear in what sense a

low probability means that one might expect that the thing will not

happen. However, Keynes produced a self-consistent axiomatic sys-

tem. There's a great deal in other modern theories, for instance, in

quantum mechanics, which inclines one very strongly to take this

philosophical position, although the last word about this subject has

certainly not been said and is not going to be said for a long time.

Anyway, one is also tempted in the case of quantum mechanics to

modify one's outlook on logics and to view probability as intrinsically

tied to logics. 5

[ Von Neumann discussed next two theories of probability and in-

formation "which are quite relevant in this context although they are

not conceived from the strictly logical point of view." The first is the

theory of entropy and information in thermodynamics; the second

is Shannon's information theory.

In connection with entropy and information von Neumann referred

to Boltzmann, Hartley, and Szilard. He explained at length the para-

3
[ A Philosophical Essay on Probabilities.]

4
[ A Treatise on Probability.]

5
[ In his "Quantum Logics (Strict-and-Probability-Logics)", von Neumann

concluded: ^Probability logics cannot be reduced to strict logics, but constitute an
essentially wider system than the latter, and statements of the form P(a, b) = <j>

(0 < <f> < 1) are perfectly new and sui generis aspects of physical reality.

"So probability logics appear as an essential extension of strict logics. This

view, the so-called 'logical theory of probability' is the foundation of J. M.
Keynes's work on this subject."

Compare von Neumann and Birkhoff, "The Logic of Quantum Mechanics,"
and von Neumann and Morgenstern, Theory of Games and Economic Behavior,

Sec. 3.3.3.]
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dox of Maxwell's demon and how Szilard resolved it by working out

the relation of entropy to information. 6 Von Neumann said that

Shannon's theory is a quantitative theory of measuring the capacity

of a communications channel. He explained and illustrated the con-

cept of redundancy. He pointed out that redundancy makes it possible

to correct errors, for example, to read proof. Redundancy "is the only

thing which makes it possible to write a text which is longer than, say,

ten pages. In other words, a language which has maximum compres-

sion would actually be completely unsuited to conveying information

beyond a certain degree of complexity, because you could never find

out whether a text is right or wrong. And this is a question of principle.

It follows, therefore, that the complexity of the medium in which you

work has something to do with redundancy."

In his review of Wiener's Cybernetics von Neumann made an ex-

tended statement about entropy and information which it is appro-

priate to quote here. "Entropy for the physicist is a concept belonging

to the discipline of thermodynamics where the transformations among
the various forms of energy are studied. It is well known that the

total energy of a complete, closed system is always conserved : energy

is neither created nor lost but only transformed. This constitutes the

first fundamental theorem of thermodynamics, or the energy theorem.

There is, however, in addition, the second fundamental theorem of

thermodynamics, or entropy theorem, which states that a hierarchy

exists among the forms of energy: mechanical (kinetic or potential)

energy, constituting the highest form, thermal energies constituting

under it a decreasing hierarchical sequence in the order of decreasing

temperature, and all other forms of energy permitting a complete

classification relative to the gradations of this schema. It states, fur-

thermore, that energy is always degraded, that is, that it always moves

spontaneously from a higher form to a lower one, or if the opposite

should happen in a part of the system, a compensatory degradation

will have to take place in some other part. The bookkeeping that is

required to account for this continuing overall degradation is effected

by a certain well defined physical quantity, the entropy, which meas-

ures the hierarchic position held or the degree of degradation suffered

by any form of energy.

"The thermodynamical methods of measuring entropy were known
in the mid-nineteenth century. Already in the early work on statistical

physics (L. Boltzmann, 1896) it was observed that entropy was closely

6
[ There is a good exposition of the work of Szilard, as well as that of Shan-

non and Hamming, in Brillouin's Science and Information Theory.]
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connected with information: Boltzmann found entropy to be propor-

tional to the logarithm of the number of alternatives which are possi-

ble for a physical system after all the information that one possesses

about that system macroscopically (that is, on the directly, humanly
observable scale) has been recorded. 7 In other words, it is proportional

to the logarithm of the amount of missing information. This concept

was elaborated further by various authors for various applications:

H. Nyquist and R. V. L. Hartley, for transmission of information in

the technical communication media (Bell System Technical Journal,

Vol. 3, 1924, and Vol. 7, 1928) ; L. Szilard, for information in physics

in general (Zschr. f. Phys., Vol. 53, 1929) ; and the reviewer, for quan-

tum mechanics and elementary particle physics (Mathematical

Foundations of Quantum Mechanics, Berlin, 1932, Chapter V).

"The technically well-equipped reader is advised to consult at this

point some additional literature, primarily L. Szilard's work, referred

to above, which also contains a particularly instructive analysis of

the famous thermodynamical paradox of "Maxwell's demon, " and

C. E. Shannon's very important and interesting recent work on the

"Theory of Information, " "Artificial Languages," "Codes," etc.

(Bell System Technical Journal, Vol. 27, 1948). There is reason to

believe that the general degeneration laws, which hold when entropy

is used as a measure of the hierarchic position of energy, have valid

analogs when entropy is used as a measure of information. On this

basis one may suspect the existence of connections between thermody-

namics and new extensions of logics."

In the Illinois lectures von Neumann next discussed Hamming's

work on error-detecting and error-correcting codes. He then showed

how the digital system with a base (binary, decimal, etc.) is an applica-

tion of information theory. "Digitalization is just a very clever trick

to produce extreme precision out of poor precision. By writing down
30 binary digits with 30 instruments, each of which is only good

enough that you can distinguish two states of it (with intrinsic errors

maybe on the 10 per cent level), you can represent a number to ap-

proximately one part in a billion. The main virtue of the digital sys-

tem is that we know no other trick which can achieve this. From the

information point of view it is clear that this can be done, because

the entropy in 30 binary instruments is 30 units, and something which

7
[ Vorlesungen iiber Gastheorie, Vol. I, Sec. 6. Boltzmann's result appeared

originally in 1877 in "Uber die Beziehung zwischen dem zweiten Hauptsatze
der mechanischen Warmetheorie und der Wahrscheinlichkeitsrechnung respek-

tive den Satzen iiber das Warrnleichgewicht," Wissenschaftliche Abhandlungen
,

Vol. II, pp. 164-223.]
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is known to one part in a billion has an entropy of the logarithm of a

billion (to the base two), or about 30 units."

He then pointed out that while organisms use mixed analog-pulse

systems for transmitting information, they never (to the best of our

knowledge) use a coded digital system with a base. Rather, when
"the nervous system transmits a number, it transmits it by what is

essentially a frequency modulation trick and not as a coded digital

aggregate. " He suggested that the reason for this is that the frequency

modulation method is more reliable than the digital system.]

I have been trying to justify the suspicion that a theory of informa-

tion is needed and that very little of what is needed exists yet. Such

small traces of it which do exist, and such information as one has

about adjacent fields indicate that, if found, it is likely to be similar

to two of our existing theories: formal logics and thermodynamics.

It is not surprising that this new theory of information should be like

formal logics, but it is surprising that it is likely to have a lot in com-

mon with thermodynamics.

Though this new theory of information will be similar to formal

logics in many respects, it will probably be closer to ordinary mathe-

matics than formal logics is. The reason for this is that present day

formal logics has a very un-analytical, un-mathematical charac-

teristic: it deals with absolutely all-or-none processes, where every-

thing that either does or does not happen is finitely feasible or not

finitely feasible. These all-or-none processes are only weakly connected

to analysis, which is the best developed and best known part of mathe-

matics, while they are closely eonnected to combinatorics, that part

of mathematics of which we know the least. There is reason to believe

that the kind of formal logical machinery we will have to use here

will be closer to ordinary mathematics than present day logics is.

Specifically, it will be closer to analysis, because all axioms are likely

to be of a probabilistic and not of a rigorous character. Such a phe-

nomenon has taken place in the foundations of quantum mechanics.

Thermodynamical concepts will probably enter into this new theory

of information. There are strong indications that information is similar

to entropy and that degenerative processes of entropy are paralleled

by degenerative processes in the processing of information. It is likely

that you cannot define the function of an automaton, or its efficiency,

without characterizing the milieu in which it works by means of sta-

tistical traits like the ones used to characterize a milieu in thermo-

dynamics. The statistical variables of the automaton's milieu will,

of course, be somewhat more involved than the standard thermody-

namical variable of temperature, but they will probably be similar

in character.
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Also, it is quite clear from the practice of building computing ma-
chines that the decisive properties of computing machines involve

balance: balances between the speeds of various parts, balances be-

tween the speed of one part and the sizes of other parts, even balances

between the speed ratio of two parts and the sizes of other parts. I

mentioned this in the case of the hierarchic structure of memory

[p. 41]. All of these requirements look like the balance requirements

one makes in thermodynamics for the sake of efficiency. An automaton

in which one part is too fast for another part, or where the memory is

too small, or where the speed ratio of two memory stages is too large

for the size of one, looks very much like a heat engine which doesn't

run properly because excessively high temperature differences exist

between its parts. I will not go into the details of this, but I would

like to emphasize that this thermodynamical link is probably quite

a close one.



Fourth Lecture

THE ROLE OF HIGH AND OF
EXTREMELY HIGH
COMPLICATION

Comparisons between computing machines and the nervous systems.

Estimates of size for computing machines, present and near future.

Estimates for size for the human central nervous system. Excursus about

the "mixed" character of living organisms. Analog and digital elements.

Observations about the "mixed" character of all componentry, artificial as

well as natural. Interpretation of the position to be taken with respect to

these.

Evaluation of the discrepancy in size between artificial and natural auto-

mata. Interpretation of this discrepancy in terms of physical factors. Nature

of the materials used.

The probability of the presence of other intellectual factors. The role of

complication and the theoretical penetration that it requires.

Questions of reliability and errors reconsidered. Probability of individual

errors and length of procedure. Typical lengths of procedure for computing

machines and for living organisms—that is, for artificial and for natural

automata. Upper limits on acceptable probability of error in individual

operations. Compensation by checking and self-correcting features.

Differences of principle in the way in which errors are dealt with in artificial

and in natural automata. The "single error" principle in artificial automata.

Crudeness of our approach in this case, due to the lack of adequate theory.

More sophisticated treatment of this problem in natural automata : The role

of the autonomy of parts. Connections between this autonomy and evolution.

After the broad general discussions of the last two lectures I would

like to return to the subject of the specific automata which we know.

I would like to compare artificial automata, specifically computing

machines, with natural automata, particularly the human nervous

system. In order to do this, I must say a few things in both cases

about components and I must make certain comparisons of sizes.

As I mentioned before, in estimating the size of the human nervous

system one is limited to a figure which is not very well established,

but which is probably right in its order of magnitude. This is the
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statement that there are 1010 neurons in the human brain. The
number of nerves present elsewhere in the human organism is proba-

bly much smaller than this. Also, a large number of these other

nerves originate in the brain anyway. The largest aggregation of

nerves of the periphery is on the retina, and the optic nerve going

from the retina to the brain is part of the brain.

Compared to this, the number of vacuum tubes involved in the

computing machines we know of is very small, a million times smaller.

The largest existing computing machine, the ENIAC, has 2 X 104

vacuum tubes. Another large computing machine, the SSEC, which

belongs to the IBM Company, contains a mixture of vacuum tubes

and relays, about 10 thousand of each. The fastest computing ma-
chines now under construction are designed to have several thousand

vacuum tubes, perhaps 3 thousand. The reason for this difference

in size between the ENIAC and the fast machines now under con-

struction is a difference in the treatment of memory, which I will

discuss later.

So the human nervous system is roughly a million times more -

complicated than these large computing machines. The increase in

complexity from these computing machines to the central nervous

system is more than the increase in complexity from a single vacuum
tube to these computing machines. Even measuring complexity on a

logarithmic scale, which is highly generous, we have not yet come
half the way. I think that in any sensible definition of complexity,

it would be much less than half way.

There is, however, a factor in favor of these machines: they're

faster than the human brain. The time in which a human nerve can

respond is about \ millisecond. However, that time is not a fair

measure of the speed of the neuron, because what matters is not the

time in which the neuron responds, but the time in which it recovers,

the time from one response to the next potential response. That

time is, at best, 5 milliseconds. In the case of a vacuum tube it's

difficult to estimate the speed, but present designs call for repetition

rates which are not much in excess of a million per second.

Thus the nervous system has a million times as many components

as these machines have, but each component of the machine is about

5 thousand times faster than a neuron. Counting what can be done,

hour by hour, the nervous system outperforms the machine by a

factor of roughly 200. This estimate, however, favors the automaton,

because an n-fold increase in size brings much more than an n-fold

increase in what can be done. What can be done is a matter of the

interrelationships between the components, and the number of
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interrelationships increases with the square of the number of com-

ponents. And apart from this, what can be done depends on certain

minima. Below a certain minimum level of complexity you cannot

do a certain thing, but above this minimum level of complexity you

can do it.

[Von Neumann next compared the human nervous system and

computers with respect to volume. The decisive factor is the space in

which the control and amplifying functions are performed. In the case

of the vacuum tube this is essentially the space between the cathode

and the control grid, which is of the order of magnitude of a millime-

ter. In the case of the nerve cell it is the thickness of the nerve mem-
brane, which is of the order of 1 micron. The ratio in size is about 1000

to 1, and this is also the ratio in voltage, so that the intensity of the

field which is used for control and amplification is about the same in

the vacuum tube and the nerve cell. This means that differences in

total energy dissipation are mainly due to differences in size. "A dis-

crepancy of 103 in linear size means a discrepancy of 10 9 in volume,

and probably a not very different discrepancy in energy." See also

Collected Works 5.299-302 and The Computer and the Brain 44-52.

He then calculated the energy which is dissipated "per elementary

act of information, that is, per elementary decision of a two-way

alternative and per elementary transmittal of 1 unit of information."

He did this for three cases: the thermodynamical minimum, the

vacuum tube, and the neuron.

In the third lecture he said that thermodynamical information is

measured by the logarithm, to the base two, of the number of alterna-

tives involved. The thermodynamical information in the case of two

alternatives is thus one, "except that this is not the unit in which you

measure energy. Entropy is energy only if you specify the tempera-

ture. So, running at low temperature you can say what energy should

be dissipated." He then computed the thermodynamical minimum
of energy per elementary act of information from the formula kT
\og eN ergs, where k is Boltzmann's constant (1.4 X 10~16 ergs per

degree), T is the temperature in absolute units, and N is the number

of alternatives. For a binary act N = 2, and taking the temperature

to be about 300 degrees absolute, he obtained 3 X 10~~14 ergs for the

thermodynamical minimum.

Von Neumann then estimated that the brain dissipates 25 watts,

has 1010 neurons, and that on the average a neuron is activated about

10 times per second. Hence the energy dissipation per binary act in a

nerve cell is roughly 3 X 10~3 ergs. He estimated that a vacuum tube

dissipates 6 watts, is activated about 100,000 times per second, and

thus dissipates 6 X 102 ergs per binary act.]
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So our present machinery is about 200 thousand times less efficient

than the nervous system is. Computing machines will be improved in

the next few years, perhaps by replacing vacuum tubes with amplify-

ing crystals, but even then they will be of the order of 10 thousand

times less efficient than the nervous system. The remarkable thing,

however, is the enormous gap between the thermodynamical mini-

mum (3 X 10~14 ergs) and the energy dissipation per binary act in the

neuron (3 X 10~3 ergs). The factor here is 1011
. This shows that the

thermodynamical analysis is missing a large part of the story. Meas-

ured on a logarithmic scale, the gap between our instrumentation,

which is obviously amateurish, and the procedures of nature, which

show a professional touch, is about half the gap between the best

devices we know about and the thermodynamical minimum. What
this gap is due to I don't know. I suspect that it's due to something

like a desire for reliability of operation.

Thus, for an elementary act of information, nature does not use ,„

what, from the point of view of physics, is an elementary system with

two stable states, such as a hydrogen atom. All the switching organs

used are much larger. If nature really operated with these elementary

systems, switching organs would have dimensions of the order of a

few angstroms, while the smallest switching organs we know have di-

mensions of the order of thousands or tens of thousands of angstroms.

There is obviously something which forces one to use organs several

orders of magnitude larger than is required by the strict thermo-

dynamical argument. Thus, though the observation that information

is entropy tells an important part of the story, it by no means tells the

whole story. There is a factor of 1011
still to be accounted for.

[Von Neumann then discussed memory components. Vacuum
tubes, which are switching organs, may be used for memory. But
since the standard circuit for storing a binary digit has two tubes, and

additional tubes are needed for transmitting the information in and

out, it is not feasible to build a large memory out of vacuum tubes.

"The actual devices which are used are of such a nature that the

store is effected, not in a macroscopic object like a vacuum tube, but

in something which is microscopic and has only a virtual existence.'

'

Von Neumann describes two devices of this sort: acoustic delay line

storage and cathode ray tube storage.

An acoustic delay line is a tube which is filled with a medium such

as mercury and which has a piezo-electric crystal at each end. When
the transmitting crystal is stimulated electrically, it produces an

acoustic wave that travels through the mercury and causes the re-

ceiving crystal to produce an electrical signal. This signal is amplified,

reshaped, and retimed and sent to the transmitting crystal again.
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This acoustic-electrical cycle can be repeated indefinitely, thereby

providing storage. A binary digit is represented by the presence or

absence of a pulse at a given position at a given time, and since the

pulses circulate around the system, the digit is not stored in any fixed

position. "The thing which remembers is nowhere in particular."

Information may be stored in a cathode ray tube in the form of

electric charges on the inside surface of the tube. A binary digit is

represented by the charge stored in a small area. These charges are

deposited and sensed by means of the electron beam of the cathode

ray tube. Since the area associated with a given binary digit must be

recharged frequently, and since this area may be moved by changing

the position of the electron beam, this memory is also virtual. "The
site of the memory is really nowhere organically, and the mode of

control produces the memory organ in a virtual sense, because no

permanent physical changes ever occur."]

There's therefore no reason to believe that the memory of the

central nervous system is in the switching organs (the neurons). The
size of the human memory must be very great, much greater than

1010 binary units. If you count the impressions which a human gets in

his life or other things which appear to be critical, you obtain numbers

like 1015
. One cannot place much faith in these estimates, but I think

it likely that the memory capacity of the human nervous system is

greater than 1010
. I don't know how legitimate it is to transfer our

experience with computing machines to natural systems, but if our

experience is worth anything it is highly unlikely that the natural

memory should be in switching organs or should consist of anything

as unsophisticated and crude as the modification of a switching organ.

It has been suggested that memory consists in a change of threshold

at a synapse. I don't know if this is true, but the memory of comput-

ing machines does not consist of bending a grid. A comparison be-

tween artificial automata and the central nervous system makes it

probable that the memory of the latter is more sophisticated and more

virtual than this. Therefore, I think that all guesses about what the

memory of the human organism is, and where it sits, are premature.

Another thing of which I would like to talk is this. I have been

talking as if a nerve cell were really a pure switching organ. It has

been pointed out by many experts in neurology and adjacent fields

that the nerve cell is not a pure switching organ but a very delicate

continuous organ. In the lingo of computing machinery one would

say it is an analog device that can do vastly more than transmit or

not transmit a pulse. There is a possible answer to this, namely, that

vacuum tubes, electromechanical relays, etc. are not switching devices
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either, since they have continuous properties. They are all charac-

terized by this, however, that there is at least one way to run them

where they have essentially an all-or-none response. What matters is

how the component runs when the organism is functioning normally.

Now nerve cells do not usually run as all-or-none organs. For in-

stance, the method of translating a stimulus intensity into a fre-

quency of response depends on fatigue and the time of recovery, which

is a continuous or analog response. However, it is quite clear that

the all-or-none character of a neuron is a very important part of the

story.

The human organism is not a digital organ either, though one part

of it, the nervous system, is essentially digital. Almost all the nervous

stimuli end in organs which are not digital, such as a contracting

muscle or an organ which causes secretions to produce a chemical.

To control the production of a chemical and rely on the diffusion rate

of a chemical is to employ a much more sophisticated analog pro-

6edure than we ever use in analog computing machines. The most

important loops in the human system are of this nature. A system of

nervous stimuli goes through a complicated network of nerves and

then controls the operation of what is essentially a chemical factory.

The chemicals are distributed by a very complicated hydrodynamical

system, which is completely analog. These chemicals produce nerv-

ous stimuli which travel in a digital manner through the nervous

system. There are loops where this change from digital into analog

occurs several times. So the human organism is essentially a mixed

system. But this does not decrease the necessity for understanding

the digital part of it.

Computing machines aren't purely digital either. The way we run

them now, their inputs and outputs are digital. But it's quite clear

that we need certain non-digital inputs and outputs. It's frequently

desirable to display the result, not in digits, but, say, as a curve on

an oscilloscope screen. This is an analog output. Moreover, I think

that the important applications of these devices will come when you

can use them to control complicated machinery, for example, the

flight of a missile or of a plane. In this case the inputs will come from

an analog source and the outputs will control an analog process.

This whole trans-continuous alternation between digital and analog

mechanisms is probably characteristic of every field.

The digital aspect of automata should be emphasized at the present

time, for we now have some logical tools to deal with digital mech-

anisms, and our understanding of digital mechanisms is behind our

understanding of analog mechanisms. Also, it appears that digital
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mechanisms are necessary for coin plicated functions. Pure analog

mechanisms are usually not suited for very complicated situations.

The only way to handle a complicated situation with analog mech-

anisms is to break it up into parts and deal with the parts separately

and alternately, and this is a digital trick.

Let me now come to the following question. Our artificial automata

are much smaller than natural automata in what they do and in the

number of components they have, and they're phenomenally more

expensive in terms of space and energy. Why is this so? It's mani-

festly hopeless to produce a true answer at the present time: We can

hardly explain why two objects are different if we understand one a

little and the other not at all. However, there are some obvious dis-

crepancies in the tools with which we operate, which make it clear

that we would have difficulty in going much further with these tools.

The materials which we are using are by their very nature not well

suited for the small dimensions nature uses. Our combinations of

metals, insulators, and vacuums are much more unstable than the

materials used by nature; that they have higher tensile strengths is

completely incidental. If a membrane is damaged it will reconstruct

itself, but if a vacuum tube develops a short between its grid and

cathode it will not reconstruct itself. Thus the natural materials

have some sort of mechanical stability and are well balanced with

respect to mechanical properties, electrical properties, and reliability

requirements. Our artificial systems are patchworks in which we
achieve desirable electrical traits at the price of mechanically unsound

things. We use techniques which are excellent for fitting metal to

metal but are not very good for fitting metal to vacuum. To obtain

millimeter spacings in an inaccessible vacuum space is a great me-

chanical achievement, and we will not be able to decrease the size by
large factors here. And so the differences in size between artificial

and natural automata are probably connected essentially with quite

radical differences in materials.

[ Von Neumann proceeded to discuss what he thought was a deeper

cause of the discrepancy in size between natural and artificial auto-

mata. This is that many of the components of the natural system \/

serve to make the system reliable. As he noted in the third lecture,

actual computing elements function correctly with a certain proba-

bility only, not with certainty. In small systems the probability

that the whole system will behave incorrectly is relatively small and

may often be neglected, but this is not the case with large systems.

Thus error considerations become more important as the system be-

comes more complex.

Von Neumann made some very rough calculations to justify this
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conclusion. Assuming that the system is designed in such a way that

the failure of a single element would result in failure of the whole

system, he calculated the error probability required for a given mean
free path between system errors. For the human nervous system he

used the following figures: 1010 neurons; each neuron activated 10

times per second on the average; a mean free path between fatal

errors of 60 years (the average life span). Since 60 years is about

2 X 10 9 seconds, the product of these numbers is 2 X 1020
. Hence

an error probability of 0.5 X 10~20 for each activation of an element

is required under these assumptions. For a digital computer he used

the figures: 5 X 103 vacuum tubes, 10 5 activations per tube per sec-

ond, and a desired mean free path between system errors of 7 hours

(about 2 X 104 seconds). An error probability of 10~13 per tube ac-

tivation is required for this degree of reliability. Compare the calcu-

lations at Collected Works 5.366-367.

He pointed out that vacuum tubes, and artificial components

generally, do not have an error probability as low as 10~13
, and that

neurons probably do not either. We try to design computing ma-
chines so that they will stop when they make an error and the opera-

tor can then locate it and correct it. For example, a computer may
perform a certain operation twice, compare the results, and stop if

the results differ.]

It's very likely that on the basis of the philosophy that every error

has to be caught, explained, and corrected, a system of the complexity

of the living organism would not run for a millisecond. Such a system

is so well integrated that it can operate across errors. An error in it

does not in general indicate a degenerative tendency. The system is

sufficiently flexible and well organized that as soon as an error shows

up in any part of it, the system automatically senses whether this

error matters or not. If it doesn't matter, the system continues to

operate without paying any attention to it. If the error seems to the

system to be important, the system blocks that region out, by-passes

it, and proceeds along other channels. The system then analyzes the

region separately at leisure and corrects what goes on there, and if

correction is impossible the system just blocks the region off and by-

passes it forever. The duration of operability of the automaton is

determined by the time it takes until so many incurable errors have

occurred, so many alterations and permanent by-passes have been

made, that finally the operability is really impaired. This is a com-

pletely different philosophy from the philosophy which proclaims

that the end of the world is at hand as soon as the first error has

occurred.

To apply the philosophy underlying natural automata to artificial
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automata we must understand complicated mechanisms better than

we do, we must have more elaborate statistics about what goes wrong,

and we must have much more perfect statistical information about

the milieu in which a mechanism lives than we now have, ^m^iiaiigm^

^akm can not be separated from the milieu to which it responds.

By that 1 mean that it's meaningless to say that an automaton is

good or bad, fast or slow, reliable or unreliable, without telling in

what milieu it operates. The characteristics of a human for survival

are well defined on the surface of the earth in its present state, though

for most types of humans you must actually specialize the situation

a little further than this. But it is meaningless to argue how the hu-

man would survive on the bottom of the ocean or in a temperature of

1000 degrees centigrade. Similarly, in discussing a computing machine

it is meaningless to ask how fast or how slow it is, unless you specify

what type of problems will be given to it.

It makes an enormous difference whether a computing machine

is designed, say, for more or less typical problems of mathematical

analysis, or for number theory, or combinatorics, or for translating

a text. We have an approximate idea of how to design a machine to

handle the typical general problems of mathematical analysis. I

doubt that we will produce a machine which is very good for number
theory except on the basis of our present knowledge of the statistical

properties of number theory. I think we have very little idea as to

how to design good machines for combinatorics and translation.

What matters is that the statistical properties of problems of

mathematical analysis are reasonably well known, and as far as we
know, reasonably homogeneous. Consider some problems in mathe-

matical analysis which look fairly different from each other and which

by mathematical standards are very different: finding the roots of an

equation of the tenth order, inverting a matrix of the twentieth order,

solving a proper value problem, solving an integral equation, or

solving an integral differential equation. These problems are sur-

prisingly homogeneous with respect to the statistical properties which

matter for a computing machine: the fraction of multiplications to

other operations, the number of memory references per multiplication,

and the optimal hierarchic structure of the memory with respect to

access time. There's vastly less homogeneity in number theory. There

are viewpoints under which number theory is homogeneous, but we
don't know them.

So, it is true for all these automata that you can only assign them

a value in combination with the milieu which they have to face.

Natural automata are much better suited to their milieu than any
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artifacts we know. It is therefore quite possible that we are not too

far from the limits of complication which can be achieved in artificial

automata without really fundamental insights into a theory of in-

formation, although one should be very careful with such statements

because they can sound awfully ridiculous 5 years later.

[ Von Neumann then explained why computing machines are de-

signed to stop when a single error occurs. The fault must be located

and corrected by the engineer, and it is very difficult for him to lo-

calize a fault if there are several of them. If there is only one fault

he can often divide the machine into two parts and determine which

part made the error. This process can be repeated until he isolates

the fault. This general method becomes much more complicated if

there are two or three faults, and breaks down when there are many
faults.]

The fact that natural organisms have such a radically different

attitude about errors and behave so differently when an error occurs

is probably connected with some other traits of natural organisms,

which are entirely absent from our automata. The ability of a natural

organism to survive in spite of a high incidence of error (which our

artificial automata are incapable of) probably requires a very high

flexibility and ability of the automaton to watch itself and reorganize

itself. And this probably requires a very considerable autonomy of

parts. There is a high autonomy of parts in the human nervous sys-

tem. This autonomy of parts of a system has an effect which is ob-

servable in the human nervous system but not in artificial automata.

When parts are autonomous and able to reorganize themselves, when
there are several organs each capable of taking control in an emer-

gency, an antagonistic relation can develop between the parts so that

they are no longer friendly and cooperative. It is quite likely that

all these phenomena are connected.



Fifth Lecture

RE -EVALUATION OF THE PROBLEMS
OF COMPLICATED AUTOMATA-
PROBLEMS OF HIERARCHY

AND EVOLUTION

Analysis of componentry and analysis of integration. Although these parts

have to appear together in a complete theory, the present state of our informa-

tion does not justify this yet.

The first problem: Reasons for not going into it in detail here. Questions

of principle regarding the nature of relay organs.

The second problem: Coincides with a theory of information and of auto-

mata. Reconsideration of the broader program regarding a theoretical discus-

sion of automata as indicated at the end of the second lecture.

Synthesis of automata. Automata which can effect such syntheses.

The intuitive concept of "complication." Surmise of its degenerative

character: In connection with descriptions of processes by automata and in

connection with syntheses of automata by automata.

Qualifications and difficulties regarding this concept of degeneracy.

Rigorous discussion: Automata and their "elementary" parts. Definition

and listing of elementary parts. Synthesis of automata by automata. The

problem of self-reproduction.

Main types of constructive automata which are relevant in this connection

:

The concept of a general instruction. The general constructive automaton

which can follow an instruction. The general copying automaton. The self-

reproducing combination.

Self-reproduction combined with synthesis of other automata: The en-

zymatic function. Comparison with the known major traits of genetic and

mutation mechanisms.

The questions on which IVe talked so far all bear on automata

whose operations are not directed at themselves, so that they produce

results which are of a completely different character than themselves.

This is obvious in each of the three cases I have referred to.

It is evident in the case of a Turing automaton, which is a box

with a finite number of states. Its outputs are modifications of another

entity, which, for the sake of convenience, I call a punched tape.

74
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This tape is not itself an object which has states between which it

can move of its own accord. Furthermore, it is not finite, but is as-

sumed to be infinite in both directions. Thus this tape is qualitatively

completely different from the automaton which does the punching,

and so the automaton is working into a qualitatively different me-

dium.

This is equally true for the automata discussed by McCulloch and

Pitts, which are made of units, called neurons, that produce pulses.

The inputs and outputs of these automata are not the neurons but

the pulses. It is true that these pulses may go to peripheral organs,

thereby producing entirely different reactions. But even there one

primarily thinks, say, of feeding the pulses into motor or secretory

organs, so it is still true that the inputs and outputs are completely

different from the automaton itself.

finally, it is entirely true for computing machines, which can be

thought of as machines which are fed, and emit, some medium like

punched tape. Of course, I do not consider it essentially different

whether the medium is a punched card, a magnetic wire, a magnetized

metal tape with many channels on it, or a piece of film with points

photographed on it. In all these cases the medium which is fed to

the automaton and which is produced by the automaton is completely

different from the automaton. In fact, the automaton doesn't produce

any medium at all; it merely modifies a medium which is completely

different from it. One can also imagine a computing machine with

an output of pulses which are fed to control completely different

entities. But again, the automaton is completely different from the

electrical pulses it emits. So there's this qualitative difference.

A complete discussion of automata can be obtained only by taking

a broader view of these things and considering automata which can

have outputs something like themselves. Now, one has to be careful

what one means by this. There is no question of producing matter

out of nothing. Rather, one imagines automata which can modify

objects similar to themselves, or effect syntheses by picking up parts

and putting them together, or take synthesized entities apart. In

order to discuss these things, one has to imagine a formal set-up like

this. Draw up a list of unambiguously defined elementary parts.

Imagine that there is a practically unlimited supply of these parts

floating around in a large container. One can then imagine an autom-

aton functioning in the following manner: It also is floating around

in this medium ; its essential activity is to pick up parts and put them

together, or, if aggregates of parts are found, to take them apart.

This is an axiomatically shortened and simplified description of
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what an organism does. It's true that this view has certain limitations,

but they are not fundamentally different from the inherent limitations

of the axiomatic method. Any result one might reach in this manner
will depend quite essentially on how one has chosen to define the

elementary parts. It is a commonplace of all axiomatic methods that

it is very difficult to give rigorous rules as to how one should choose

the elementary parts, so that whether the choice of the elements was

reasonable is a matter of common sense judgment. There is no rigorous

description of what choice is reasonable and what choice is not.

First of all, one may define parts in such numbers, and each of

them so large and involved, that one has defined the whole problem

away. If you chose to define as elementary objects things which are

analogous to whole living organisms, then you obviously have killed

the problem, because you would have to attribute to these parts

just those functions of the living organism which you would like to

describe or to understand. So, by choosing the parts too large, by
attributing too many and too complex functions to them, you lose

the problem at the moment of defining it.

One also loses the problem by defining the parts too small, for

instance, by insisting that nothing larger than a single molecule,

single atom, or single elementary particle will rate as a part. In this

case one would probably get completely bogged down in questions

which, while very important and interesting, are entirely anterior

to our problem. We are interested here in organizational questions

about complicated organisms, and not in questions about the struc-

ture of matter or the quantum mechanical background of valency

chemistry. So, it is clear that one has to use some common sense

criteria about choosing the parts neither too large nor too small.

Even if one chooses the parts in the right order of magnitude, there

are many ways of choosing them, none of which is intrinsically much
better than any other. There is in formal logics a very similar diffi-

culty, that the whole system requires an agreement on axioms, and

that there are no rigorous rules on how axioms should be chosen,

just the common sense rules that one would like to get the system

one is interested in and would not like to state in his axioms either

things which are really terminal theorems of his theory or things

which belong to vastly anterior fields. For example, in axiomatizing

geometry one should assume theorems from set theory, because one

is not interested in how to get from sets to numbers, or from numbers

to geometry. Again, one does not choose the more sophisticated

theorems of analytic number theory as axioms of geometry, because

one wants to cut in at an earlier point.
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Even if the axioms are chosen within the common sense area, it is

usually very difficult to achieve an agreement between two people

who have done this independently. For instance, in the literature of

formal logics there are about as many notations as there are authors,

and anybody who has used a notation for a few weeks feels that it's

more or less superior to any other. So, while the choice of notations,

of the elements, is enormously important and absolutely basic for

an application of the axiomatic method, this choice is neither rigor-

ously justifiable nor humanly unambiguously justifiable. All one can

do is to try to submit a system which will stand up under common
sense criteria. I will give an indication of how one system can be

constructed, but I want to emphasize very strongly how relatively

I state this system.

I will introduce as elementary units neurons, a "muscle," entities

which make and cut fixed contacts, and entities which supply energy,

all defined with about that degree of superficiality with which the

formal theory of McCulloch and Pitts describes an actual neuron.

If you describe muscles, connective tissues, "disconnecting tissues,"

and means of providing metabolic energy, all with this degree of

schematization, you wind up with a system of elements with which

you can work in a reasonably uncomplicated manner. You probably

wind up with something like 10 or 12 or 15 elementary parts.

By axiomatizing automata in this manner, one has thrown half

of the problem out the window, and it may be the more important

half. One has resigned oneself not to explain how these parts are

made up of real things, specifically, how these parts are made up of

actual elementary particles, or even of higher chemical molecules.

One does not ask the most intriguing, exciting, and important ques-

tion of why the molecules or aggregates which in nature really occur

in these parts are the sort of things they are, why they are essentially

very large molecules in some cases but large aggregations in other

cases, why they always lie in a range beginning at a few microns and

ending at a few decimeters. This is a very peculiar range for an ele-

mentary object, since it is, even on a linear scale, at least five powers

of ten away from the sizes of really elementary entities.

These things will not be explained; we will simply assume that

elementary parts with certain properties exist. The question that

one can then hope to answer, or at least investigate, is: What prin-

ciples are involved in organizing these elementary parts into func-

tioning organisms, what are the traits of such organisms, and what

are the essential quantitative characteristics of such organisms? I

will discuss the matter entirely from this limited point of view.
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[At this point von Neumann made the remarks on information,

logic, thermodynamics, and balance which now appear at the end of

the Third Lecture. They are placed there because that is where von

Neumann's detailed outline located them. Those remarks are relevant

to the present discussion because the concept of complication which

von Neumann introduced next belongs to information theory.]

There is a concept which will be quite useful here, of which we have

a certain intuitive idea, but which is vague, unscientific, and imper-

fect. This concept clearly belongs to the subject of information, and

quasi-thermodynamical considerations are relevant to it. I know no

adequate name for it, but it is best described by calling it "complica-

tion." It is effectivity in complication, or the potentiality to do things.

I am not thinking about how involved the object is, but how involved

its purposive operations are. In this sense, an object is of the highest

degree of complexity if it can do very difficult and involved things.

I mention this because when you consider automata whose normal

function is to synthesize other automata from elementary parts

(living organisms and such familiar artificial automata as machine

tools), you find the following remarkable thing. There are two states

of mind, in each of which one can put himself in a minute, and in

each of which we feel that a certain statement is obvious. But each

of these two statements is the opposite or negation of the other!

Anybody who looks at living organisms knows perfectly well that

they can produce other organisms like themselves. This is their nor-

mal function, they wouldn't exist if they didn't do this, and it's

plausible that this is the reason why they abound in the world. In

other words, living organisms are very complicated aggregations of

elementary parts, and by any reasonable theory of probability or

thermodynamics highly improbable. That they should occur in the

world at all is a miracle of the first magnitude; the only thing which

removes, or mitigates, this miracle is that they reproduce themselves.

Therefore, if by any peculiar accident there should ever be one of

them, from there on the rules of probability do not apply, and there

will be many of them, at least if the milieu is reasonable. But a reason-

able milieu is already a thermodynamically much less improbable

thing. So, the operations of probability somehow leave a loophole at

this point, and it is by the process of self-reproduction that they are

pierced.

Furthermore, it's equally evident that what goes on is actually one

degree better than self-reproduction, for organisms appear to have

gotten more elaborate in the course of time. Today's organisms are

phylogenetically descended from others which were vastly simpler
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than they are, so much simpler, in fact, that it's inconceivable how
any kind of description of the later, complex organism could have

existed in the earlier one. It's not easy to imagine in what sense a

gene, which is probably a low order affair, can contain a description

of the human being which will come from it. But in this case you can

say that since the gene has its effect only within another human or-

ganism, it probably need not contain a complete description of what

is to happen, but only a few cues for a few alternatives. However,

this is not so in phylogenetic evolution. That starts from simple

entities, surrounded by an unliving amorphous milieu, and produces

something more complicated. Evidently, these organisms have the

ability to produce something more complicated than themselves.

The other line of argument, which leads to the opposite conclusion,

arises from looking at artificial automata. Everyone knows that a

machine tool is more complicated than the elements which can be

made with it, and that, generally speaking, an automaton A, which

can make an automaton B, must contain a complete description of

B and also rules on how to behave while effecting the synthesis. So,

one gets a very strong impression that complication, or productive

potentiality in an organization, is degenerative, that an organization

which synthesizes something is necessarily more complicated, of a

higher order, than the organization it synthesizes. This conclusion,

arrived at by considering artificial automata, is clearly opposite to

our early conclusion, arrived at by considering living organisms.

I think that some relatively simple combinatorial discussions of

artificial automata can contribute to mitigating this dilemma. Ap-

pealing to the organic, living world does not help us greatly, because

we do not understand enough about how natural organisms function.

We will stick to automata which we know completely because we
made them, either actual artificial automata or paper automata

described completely by some finite set of logical axioms. It is possible

in this domain to describe automata which can reproduce themselves.

So at least one can show that on the site where one would expect

complication to be degenerative it is not necessarily degenerative at

all, and, in fact, the production of a more complicated object from a

less complicated object is possible.

The conclusion one should draw from this is that complication is

degenerative below a certain minimum level. This conclusion is quite

in harmony with other results in formal logics, to which I have re-

ferred a few times earlier during these lectures. 1 We do not now know

1
[ See the end of the Second Lecture.]
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what complication is, or how to measure it, but I think that' some-

thing like this conclusion is true even if one measures complication

by the crudest possible standard, the number of elementary parts.

There is a minimum number of parts below which complication is

degenerative, in the sense that if one automaton makes another the

second is less complex than the first, but above which it is possible

for an automaton to construct other automata of equal or higher

complexity. Where this number lies depends upon how you define

the parts. I think that with reasonable definitions of parts, like those

I will partially indicate later, which give one or two dozen parts with

simple properties, this minimum number is large, in the millions. I

don't have a good estimate of it, although I think that one will be

produced before terribly long, but to do so will be laborious.

There is thus this completely decisive property of complexity,

that there exists a critical size below which the process of synthesis

is degenerative, but above which the phenomenon of synthesis, if

properly arranged, can become explosive, in other words, where

syntheses of automata can proceed in such a manner that each autom-

aton will produce other automata which are more complex and of

higher potentialities than itself.

Now, none of this can get out of the realm of vague statement

until one has defined the concept of complication correctly. And one

cannot define the concept of complication correctly until one has

seen in greater detail some critical examples, that is, some of the

constructs which exhibit the critical and paradoxical properties of

complication. There is nothing new about this. It was exactly the

same with conservation and non-conservation properties in physics,

with the concepts of energy and entropy, and with other critical

concepts. The simplest mechanical and thermodynamic systems had

to be discussed for a long time before the correct concepts of energy

and entropy could be abstracted from them.

[ Von Neumann only briefly described the kinds of elements or

parts he planned to use. There are neurons like those of McCulloch

and Pitts. There are elements "that have absolutely no function

except that they are rigid and produce a geometrical tie between

their ends.
,, Another kind of element is called a "motor organ' ' and

a "muscle-like affair"; it contracts to zero length when stimulated.

There is an organ which, when pulsed, "can either make or break a

connection." He said that less than a dozen kinds of elements are

needed. An automaton composed of these parts can catch other parts

which accidentally come in contact with it; "it is possible to invent

a system by which it can sense" what part it has caught.
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In June of 1948 von Neumann gave three lectures on automata

at the Institute for Advanced Study to a small group of friends. He
probably did this in preparation for the Hixon Symposium which

took place in September of that year. 2 These lectures contained the

most detailed description of the parts of his self-reproducing autom-

aton that I know of. For this reason, I have attempted to recon-

struct, from the notes and memories of the audience, what he said

about these parts and how they would function.

Von Neumann described eight kinds of parts. All seem to have

been symbolized with straight lines; inputs and outputs were in-

dicated at the ends and/or the middle. The temporal reference frame

was discrete, each element taking a unit of time to respond. It is not

clear whether he intended this list to be complete; I suspect that he

had not yet made up his mind on this point.

Four of the parts perform logical and information processing opera-

tions. A stimulus organ receives and transmits stimuli; it receives

them disjunctively, that is, it realizes the truth-function u
p or q."

A coincidence organ realizes the truth-function
u
p and q." An in-

hibitory organ realizes the truth-function u
p and not-g." A stimuli

producer serves as a source of stimuli.

The fifth part is a rigid member, from which a rigid frame for an

automaton can be constructed. A rigid member does not carry any

stimuli; that is, it is an insulated girder. A rigid member may be

connected to other rigid members as well as to parts which are not

rigid members. These connections are made by a fusing organ which,

when stimulated, welds or solders two parts together. Presumably

the fusing organ is used in the following way. Suppose point a of one

girder is to be joined to point b of another girder. The active or out-

put end of the fusing organ is placed in contact with points a and b.

A stimulus into the input end of the fusing organ at time t causes

points a and b to be welded together at time t + 1. The fusing organ

can be withdrawn later. Connections may be broken by a cutting

organ which, when stimulated, unsolders a connection.

The eighth part is a muscle, used to produce motion. A muscle is

normally rigid. It may be connected to other parts. If stimulated at

time t it will contract to length zero by time t + 1, keeping all its

connections. It will remain contracted as long as it is stimulated.

Presumably muscles can be used to move parts and make connections

in the following way. Suppose that muscle 1 lies between point a of

2
[ "The General and Logical Theory of Automata.' ' Collected Works 5.288-

328. It will be recalled that the Illinois lectures were delivered in December of

1949.]
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one girder and point 6 of another girder, and muscle 2 lies between

point a and the active end c of a fusing organ. When both muscles

are stimulated, they will contract, thereby bringing points a, 6, and

c together. When the fusing organ is stimulated, it will weld points

a and b together. Finally, when the stimuli to the muscles are stopped,

the muscles will return to their original length, at least one end of

muscle 1 separating from the point ab. Von Neumann does not seem

to have discussed the question of how the connections between mus-

cles and other parts are made and broken.

Von Neumann conceived of an automaton constructing other

automata in the following manner. The constructing automaton

floats on a surface, surrounded by an unlimited supply of parts. The
constructing automaton contains in its memory a description of the

automaton to be constructed. Operating under the direction of this

description, it picks up the parts it needs and assembles them into

the desired automaton. To do this, it must contain a device which

catches and identifies the parts that come in contact with it. The
June, 1948 lectures contain only a few remarks on how this device

might operate. Two stimulus units protrude from the constructing

automaton. When a part touches them tests can be made to see what

kind of part it is. For example, a stimulus organ will transmit a sig-

nal; a girder will not. A muscle might be identified by determining

that it contracts when stimulated.

Von Neumann intended to disregard the fuel and energy problem

in his first design attempt. He planned to consider it later, perhaps

by introducing a battery as an additional elementary part. Except

for this addition, von Neumann's early model of self-reproduction

deals with the geometrical-kinematic problems of movement, contact,

positioning, fusing, and cutting, and ignores the truly mechanical

and chemical questions of force and energy. Hence I call it his kine-

matic model of self-reproduction. This early model is to be contrasted

with his later cellular model of self-reproduction, which is presented

in Part II of the present work.

In his June, 1948 lectures von Neumann raised the question of

whether kinematic self-reproduction requires three dimensions. He
suspected that either three dimensions or a Riemann surface (multi-

ply-connected plane) would be needed. We will see in Part II that

only two dimensions are required for self-reproduction in von Neu-

mann's cellular model. This is a strong indication that two dimensions

are sufficient for kinematic self-reproduction.

We return now to the Illinois lectures. Von Neumann discussed

the general design of a self-reproducing automaton. He said that it
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is in principle possible to set up a machine shop which can make a

copy of any machine, given enough time and raw materials. This shop

would contain a machine tool B with the following powers. Given a

pattern or object X, it would search over X and list its parts and

their connections, thereby obtaining a description of X. Using this

description, the tool B would then make a copy of X, "This is quite

close to self-reproduction, because you can furnish B with itself."]

But it is easier, and for the ultimate purpose just as effective, not

to construct an automaton which can copy any pattern or specimen

given to it, but to construct an automaton which can produce an

object starting from a logical description. In any conceivable method

ever invented by man, an automaton which produces an object by
copying a pattern will go first from the pattern to a description and

then from the description to the object. It first abstracts what the

thing is like, and then carries it out. It's therefore simpler not to

extract from a real object its definition, but to start from the defini-

tion.

To proceed in this manner one must have axiomatic descriptions

of automata. You see, I'm coming quite close to Turing's trick with

universal automata, which also started with a general formal descrip-

tion of automata. If you take those dozen elements I referred to in a

rather vague and general way and give exact descriptions of them

(which could be done on two printed pages or less), you will have a

formal language for describing automata unambiguously. Now any

notation can be expressed as a binary notation, which can be recorded

on a punched tape with a single channel. Hence any automaton

description could be punched on a piece of tape. At first, it is better

not to use a description of the pieces and how they fit together, but

rather a description of the consecutive steps to be used in building

the automaton.

[ Von Neumann then showed how to construct a binary tape out of

rigid elements. See Figure 2. A binary character is represented at

each intersection of the basic chain; "one" is represented by an at-

tached rigid element, "zero" by the absence of a side element. Writing

and erasing are accomplished by adding and removing side elements.]

I have simplified unnecessarily, just because of a purely mathe-

matical habit of trying to do things with a minimum of notation.

Since I'm using a binary notation, all I'm attaching here is no side

chain, or a one-step side chain. Existing languages and practical

notations use more symbols than the binary system. There is no

difficulty in using more symbols here; you simply attach more com-

plex side chains. In fact, the very linearity of our logical notation is
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completely unnecessary here. You could use more complicated looped

chains, which would be perfectly good carriers for a code, but it would

not be a linear code. There is reason to suspect that our predilection

for linear codes, which have a simple, almost temporal sequence, is

chiefly a literary habit, corresponding to our not particularly high

level of combinatorial cleverness, and that a very efficient language

would probably depart from linearity. 3

There is no great difficulty in giving a complete axiomatic account

of how to describe any conceivable automaton in a binary code. Any
such description can then be represented by a chain of rigid elements

like that of Figure 2. Given any automaton X, let 0(X) designate the

chain which represents X. Once you have done this, you can design a

universal machine tool A which, when furnished with such a chain

0(X), will take it and gradually consume it, at the same time building

up the automaton X from the parts floating around freely in the sur-

rounding milieu. All this design is laborious, but it is not difficult in

principle, for it's a succession of steps in formal logics. It is not quali-

tatively different from the type of argumentation with which Turing

constructed his universal automaton.

Another thing which one needs is this. I stated earlier that it might

be quite complicated to construct a machine which will copy an

automaton that is given it, and that it is preferable to proceed, not

from original to copy, but from verbal description to copy. I would

like to make one exception; I would like to be able to copy linear

chains of rigid elements. Now this is very easy. For the real reason it

is harder to copy an existing automaton than its description is that

the existing automaton does not conform with our habit of linearity,

its parts being connected with each other in all possible directions,

and it's quite difficult just to check off the pieces that have already

been described.4 But it's not difficult to copy a linear chain of rigid

elements. So I will assume that there exists an automaton B which

has this property: If you provide B with a description of anything,

it consumes it and produces two copies of this description.

Please consider that after I have described these two elementary

steps, one may still hold the illusion that I have not broken the prin-

ciple of the degeneracy of complication. It is still not true that, start-

ing from something, I have made something more subtle and more

3
[ The programming language of flow diagrams, invented by von Neumann,

is a possible example. See p. 13 of the Introduction to the present volume.]
4

[ Compare Sec. 1.6.3 of Part II, written about 3 years later. Here von
Neumann gives a more fundamental reason for having the constructing auto-

maton work from a description of an automaton rather than from the automa-
ton itself.]
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involved. The general constructive automaton A produces only X
when a complete description of X is furnished it, and on any reason

able view of what constitutes complexity, this description of X is as

complex as X itself. The general copying automaton B produces two

copies of <j>(X), but the juxtaposition of two copies of the same thing

is in no sense of higher order than the thing itself. Furthermore, the

extra unit B is required for this copying.

Now we can do the following thing. We can add a certain amount
of control equipment C to the automaton A + B. The automaton C
dominates both A and 5, actuating them alternately according to

the following pattern. The control C will first cause B to make two

copies of <t>(X). The control C will next cause A to construct X at the

price of destroying one copy of </>(X). Finally, the control C will tie

X and the remaining copy of <f>{X) together and cut them loose from

the complex (A + B + C). At the end the entity X + 4>(X) has been

produced.

Now choose the aggregate (A + B + C) for X. The automaton

(A + B + C) + 4>(A + B + C) will produce (A + B + C) +
<t>(A + B + C). Hence auto-reproduction has taken place.

[ The details are as follows. We are given the universal constructor

(A + B + C), to which is attached a description of itself, <f>(A + B +
C). Thus the process of self-reproduction starts with (A + B + C) +
<t>{A + B + C). Control C directs B to copy the description twice;

the result is (A + B + C) + <t>(A + B + C) + <t>(A + B + C).

Then C directs A to produce the automaton A + B + C from one

copy of the description; the result is (A + B + C) + (A + B + C) +
<j){A + B + C). Finally, C ties the new automaton and its description

together and cuts them loose. The final result consists of the two

automata (A + B + C) and (A + B + C) + <j>(A + B + C). If

B were to copy the description thrice, the process would start with

one copy of (A + B + C) + <f>(A + B + C) and terminate with

two copies of this automaton. In this way, the universal constructor

reproduces itself.]

This is not a vicious circle. It is quite true that I argued with a

variable X first, describing what C is supposed to do, and then put

something which involved C for X. But I defined A and B exactly,

before I ever mentioned this particular X, and I defined C in terms

which apply to any X. Therefore, in defining A, B, and (7, I did not

make use of what X is to be, and I am entitled later on to use an X
which refers explicitly to A, B, and C. The process is not circular.

The general constructive automaton A has a certain creative ability,

the ability to go from a description of an object to the object. Like-
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wise, the general copying automaton B has the creative ability to go

from an object to two copies of it. Neither of these automata, however,

is self-reproductive. Moreover, the control automaton C is far from

having any kind of creative or reproductive ability. All it can do is to

stimulate two other organs so that they act in certain ways, tie cer-

tain things together, and cut these things loose from the original

system. Yet the combination of the three automata A, B, and C is

auto-reproductive. Thus you may break a self-reproductive system

into parts whose functioning is necessary for the whole system to be

self-reproductive, but which are not themselves self-reproductive.

You can do one more thing. Let XbeA + B + C + D, where D
is any automaton. Then (A + B + C) + <j>(A + B + C + D) pro-

duces {A + B + C + D) + <t>(A + B + C + D). In other words,

our constructing automaton is now of such a nature that in its normal

operation it produces another object D as well as making a copy of

itself. This is the normal function of an auto-reproductive organism:

it creates byproducts in addition to reproducing itself.

The system (A + B + C + D) can undergo processes similar to

the process of mutation. One of the difficulties in defining what one

means by self-reproduction is that certain organizations, such as

growing crystals, are self-reproductive by any naive definition of

self-reproduction, yet nobody is willing to award them the distinc-

tion of being self-reproductive. A way around this difficulty is to

say that self-reproduction includes the ability to undergo inheritable

mutations as well as the ability to make another organism like the

original.

Consider the situation with respect to the automaton (A + B +
C + D) + <t>(A + B + C + D). By a mutation I will simply mean a

random change of one element anywhere. If an element is changed

at random in one of the automata A, B, or C, the system will usually

not completely reproduce itself. For example, if an element is changed

in C, C may fail to stimulate A and B at the proper time, or it may
fail to make the connections and disconnections which are required.

Such a mutation is lethal.

If there is a change in the description <j>(A + B + C + D), the

system will produce, not itself, but a modification of itself. Whether

the next generation can produce anything or not depends on where

the change is. If the change is in A, B, or (7, the next generation will

be sterile. If the change occurs in Z), the system with the mutation

is exactly like the original system, except that D has been replaced

by D'. This system can reproduce itself, but its by-product will be
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D' rather than D. This is the normal pattern of an inheritable muta-

tion.

So, while this system is exceedingly primitive, it has the trait of an

inheritable mutation, even to the point that a mutation made at

random is most probably lethal, but may be non-lethal and inherita-

ble.
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The Theory of Automata:

Construction, Reproduction,
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EDITORIAL NOTE

[The editor's insertions, commentaries, explanations, sum-

maries, and Chapter 5 are in brackets. The figures are at the end of

the volume.

The reader who wishes a general view of the contents of this

part should examine Sections 1.1.2.3, 1.3.3.5, 2.8.2, 2.8.3, 4.1.1, 4.3.1,

and 5.3.]



Chapter 1

GENERAL CONSIDERATIONS

1.1 Introduction

1.1.1 J The theory of automata. The formalistic study of automata

is a subject lying in the intermediate area between logics, communica-

tion theory, and physiology. It implies abstractions that make it an

imperfect entity when viewed exclusively from the point of view of

any one of the three above disciplines—the imperfection being prob-

ably worst in the last mentioned instance. Nevertheless an assimila-

tion of certain viewpoints from each one of these three disciplines

seems to be necessary for a proper approach to that theory. Hence

it will have to be viewed synoptically, from the combined point of

view of all three, and will probably, in the end, be best regarded as a

separate discipline in its own right. 1

1.1.1.2 The constructive method and its limitations. The present

paper deals with a particular and limited phase of the formalistic

theory of automata. The decisive limitation is that we will establish

certain existence theorems, without, however, being able to prove

that the constructions on which they are based are in any sense op-

tima^ or that the postulates that they use are in any sense minimal.

These questions of optimality and minimality could presumably be

treated only if the methods for the formation of invariant quantitative

concepts, and for their measurement, their evaluation, and the like,

had been much further evolved in this subject of automata, control,

and organization, than they are at present. We believe that such a

development is possible and to be expected, and that it will to an

important extent follow the patterns and the concept formations of

thermodynamics.2 The methods that will be used in this paper con-

1 [Von Neumann here referred to Wiener. See Wiener's Cybernetics and von
Neumann's review of it.]

2 Von Neumann, "The General and Logical Theory of Automata" and
' 'Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable

Components." [See also the Third and Fourth Lectures of Part I of the present

volume.]

91
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tribute, however, only very partially to the effort that is needed in

that direction, and, at any rate, we will limit ourselves at this occasion

to the establishing of certain existences (by suitable, ad hoc construc-

tions) in the sense outlined above.

1.1.2.1 The main questions: (A)-(E). Within the above limitations,

however, we will deal with problems that are rather central—at least

for the initial phases of the subject. We will investigate automata

under two important, and connected, aspects: those of logics and of

construction. We can organize our considerations under the headings

of five main questions

:

(A) Logical universality. When is a class of automata logically

universal, i.e., able to perform all those logical operations that are

at all performable with finite (but arbitrarily extensive) means?

Also, with what additional—variable, but in the essential respects

standard—attachments is a single automaton logically universal?

(B) Construetibility. Can an automaton be constructed, i.e., as-

sembled and built from appropriately defined "raw materials/' by
another automaton? Or, starting from the other end and extending

the question, what class of automata can be constructed by one,

suitably given, automaton? The variable, but essentially standard,

attachments to the latter, in the sense of the second question of (A),

may here be permitted.

(C) Construction-universality. Making the second question of (B)

more specific, can any one, suitably given, automaton be construction-

universal, i.e., be able to construct in the sense of question (B) (with

suitable, but essentially standard, attachments) every other auto-

maton?

(D) Self-reproduction. Narrowing question (C), can any auto-

maton construct other automata that are exactly like it? Can it be

made, in addition, to perform further tasks, e.g., also construct cer-

tain other, prescribed automata?

(E) Evolution. Combining questions (C) and (D), can the con-

struction of automata by automata progress from simpler types to

increasingly complicated types? Also, assuming some suitable defini-

tion of "efficiency," can this evolution go from less efficient to more

efficient automata?

1.1.2.2 The nature of the answers to be obtained. The answer to

question (A) is known. 3 We will establish affirmative answers to

3 Turing, "On Computable Numbers, with an Application to the Entschei-

dungsproblem." [See the discussion of Turing machines and universal Turing
machines at p. 49 ff . above. The indefinitely extendible tape of a Turing ma-
chine is the ' 'variable, but essentially standard, attachment" von Neumann
referred to in questions (A) and (B) above.]
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questions (B)-(D) as well.4 An important limitation to the relevance

of a similar answer to question (E) lies in the need for a more unam-

biguous formulation of the question, particularly of the meaning of

"efficiency." In addition, we will be able to treat questions (A)-(E)

in this sense with much more rigid determinations as to what consti-

tutes an automaton, namely with the imposition of what is best de-

scribed as a crystalline regularity. In fact, this further result would

seem to be at least as essential and instructive as the ability to answer

questions (A)-(D) {and, to some extent question (E); cf. above}

affirmatively.

In the balance of Chapter 1 we carry out a heuristic and preliminary

discussion of questions (A)-(E). In Chapter 2 we develop a specific

model, within the terms of which we can and will deal in full detail

and rigorously with questions (A)-(D). Chapter 3 contains the analy-

sis of another more natural, but technically more refractory, model.

Chapter 4 is devoted to further heuristic considerations, which are

more conveniently made after (and to some extent presuppose) the

detailed constructions of Chapters 2 and 3.

[ 1.1.2.3 Von Neumann's models of self-reproduction. The preceding

paragraph gives the plan von Neumann had in mind when he wrote

the present chapter. Unfortunately, von Neumann was only able to

carry out his intention through part of the planned Chapter 2. To
understand the plan, and the several references he makes to it in the

balance of the present chapter, one must know something about the

various models of self-reproduction he considered. We will describe

these models briefly in the present subsection. Of necessity, much of

what we say here is based on personal communications from people

with whom von Neumann discussed his models of self-reproduction.

Altogether, von Neumann considered five models of self-reproduc-

tion. We will call these the kinematic model, the cellular model, the

excitation-threshold-fatigue model, the continuous model, and the

probabilistic model.

The kinematic model deals with the geometric-kinematic problems

of movement, contact, positioning, fusing, and cutting, but ignores

problems of force and energy. The primitive elements of the kinematic

model are of the following kinds : logical (switch) and memory (delay)

elements, which store and process information; girders, which provide

structural rigidity; sensing elements, which sense objects in the en-

vironment; kinematic (muscle-like) elements, which move objects

around; and joining (welding) and cutting elements, which connect

4 Von Neumann, "The General and Logical Theory of Automata," Collected

Works 5.315-318.
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and disconnect elements. The kinematic model of self-reproduction

is described in the Fifth Lecture of Part I of the present work. As

indicated there, von Neumann was thinking about it at least by 1948.

Von Neumann's second model of self-reproduction is his cellular

model. It was stimulated by S. M. Ulam, who suggested during a dis-

cussion of the kinematic model that a cellular framework would be

more amenable to logical and mathematical treatment than the frame-

work of the kinematic model. 5 In the cellular model, self-reproduction

takes place in an indefinitely large space which is divided into cells,

each cell containing the same finite automaton. Von Neumann spoke

of this space as a "crystalline regularity," a "crystalline medium/' a

"granular structure," and as a "cellular structure. " 6 We will use the

term cellular structure.

There are many possible forms of cellular structure which may be

used for self-reproduction. Von Neumann chose, for detailed develop-

ment, an infinite array of square cells. Each cell contains the same
29-state finite automaton. Each cell communicates directly with its

four contiguous neighbors with a delay of at least. 1 unit of time. Von
Neumann developed this model in a manuscript entitled "Theory of

Automata: Construction, Reproduction, Homogeneity/ ' which con-

stitutes the present Part II of the present volume. In a letter to me,

Mrs. Klara von Neumann said of her husband's manuscript: "I am
quite positive that it was started by him in late September 1952 and

that he continued working on it until sometime in mid late 1953."

As far as I can tell, von Neumann did little or nothing with the manu-
script after 1953.

The manuscript as left by von Neumann had two completed chap-

ters and a long but incomplete third chapter. Chapter 1 of the manu-

script is the present chapter. Chapter 2 of the manuscript states the

transition rule governing the 29-state cellular system; this is Chapter

2 below. The incomplete Chapter 3 of the manuscript carries out the

fundamental steps in the design of a cellular self-reproducing auto-

maton; it appears below as Chapters 3 and 4. Von Neumann never

completed the design of his cellular self-reproducing automaton; I

indicate how to do this in Chapter 5 below.

Von Neumann's cellular model of self-reproduction should be com-

pared with some work of Ulam on cellular automata. In his A Collec-

6 [See footnote 17 of Sec. 1.3.1.2 below. In his "Random Processes and Trans-
formations," presented in 1950, Ulam described a cellular framework briefly

and stated that it had been considered by von Neumann and him.]
6 [Moore, "Machine Models of Self-Reproduction," suggested the name

"tessellation model."]
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tion of Mathematical Problems, Ulam formulated a matrix problem

arising out of the cellular model. In his "On Some Mathematical

Problems Connected with Patterns of Growth of Figures" and "Elec-

tronic Computers and Scientific Research," Ulam studied the growth

of figures in cellular automata with simple transition rules. He also \_y

studied the evolution of successive generations of individuals with

simple properties, each generation producing its successor in accord-

ance with a simple, but non-linear recursive transformation.

Under a covering letter dated October 28, 1952, von Neumann sent

a copy of the present Chapter 1 to H. H. Goldstine. This letter elabo-

rates the plan of Section 1.1.2.2 above.

This is the introduction—or "Chapter 1"—that I promised you. It is

tentative and incomplete in the following respects particularly:

(1) It is mainly an introduction for "Chapter 2" which will deal with a

model where every cell has about 30 states. It refers only very incompletely

to "Chapter 3" in which a model with excitation-threshold-fatigue mecha-
nisms alone will be discussed, and to "Chapter 4" where I hope to say some-

thing about a "continuous" rather than "crystalline" model. There, as far

as I can now see, a system of non-linear partial differential equations, essen-

tially of the diffusion type, will be used.

(2) The write-up is still in a quite "unliterary" form, i.e., there are no

footnotes (only their places are indicated), references, explanations of the

motivation, origin of the ideas, etc.

It is clear that when von Neumann wrote the present Chapter 1 he

had the following plan in mind. Chapter 2 was to contain a complete

development of the cellular model of self-reproduction. Chapter 3

was to treat an excitation-threshold-fatigue model of self-reproduc-

tion. Finally, Chapter 4 was to discuss a continuous model of self-

reproduction. Von Neumann finished the essential steps in the design

of the cellular model and then stopped. Unfortunately, he never found

time to finish the cellular model or write about the other two models.

Von Neumann delivered the Vanuxem Lectures at Princeton

University on March 2 through 5, 1953. There were four lectures,

entitled "Machines and Organisms. " The fourth was devoted to self-

reproduction; the kinematic model, the cellular model, the excitation-

threshold-fatigue model, and the continuous model were all men-

tioned. Since he had already agreed to give the manuscript "Theory

of Automata: Construction, Reproduction, Homogeneity" to the

University of Illinois Press, von Neumann did not himself want to

write up these lectures separately. Instead, it was arranged that John

Kemeny should write an article based on these lectures and the first

two chapters of the manuscript. This was published in 1955 under

the title "Man Viewed as a Machine." Much of the material of the



90 THEORY OF SELF-REPRODUCING AUTOMATA

first three Vanuxem Lectures appeared later in The Computer and

the Brain.

The excitation-threshold-fatigue model? of self-reproduction was to

be based on the cellular model. Each cell of the infinite structure of the

cellular model contains a 29-state automaton. Von Neumann's idea

was to construct this 29-state automaton out of a neuron-like element

which had a fatigue mechanism as well as a threshold. Since fatigue

plays an important role in the operation of neurons, an excitation-\/
threshold-fatigue model would be closer to actual systems than the

cellular model. Von Neumann never discussed how an idealized neuron

with fatigue would work, but we can design one by combining what

he said about idealized neurons without fatigue with his account of

the absolute and relative refractory periods of an actual neuron (cf.

pp. 44-48 above and Collected Works 5.375-376).

a„ An idealized excitation-threshold-fatigue neuron has a designated

threshold and a designated refractory period. The refractory period is

divided into two parts, an absolute refractory period and a relative

refractory period. If a neuron is not fatigued, it becomes excited when-

ever the number of active inputs equals or exceeds its threshold. When
the neuron becomes excited two things happen: it emits an output

signal after a specified delay, and the refractory period begins. The
neuron cannot be excited at all during the absolute refractory period;

it can be excited during the relative refractory period, but only if the

number of active inputs equals or exceeds a threshold which is higher

than the normal threshold.

When an excitation-threshold-fatigue neuron becomes excited, it

must remember this fact for the length of the refractory period and

use this information to prevent input stimuli from having their normal

effect on itself. Hence this kind of neuron combines switching, delay

of output, and an internal memory with feedback to control the effect

of incoming signals. Such a device is, in fact, a small finite automaton,

that is, a device with inputs and outputs and a finite number of inter-

nal states. In the fourth Vanuxem Lecture von Neumann suggested

that a neuron with threshold 2 and fatigue period 6 might supply most

of the states of the 29-state finite automaton needed in each cell of

his cellular framework.

7 [It should be noted that the phenomenon that von Neumann calls fatigue

is more often called refractoriness. In this more common usage, fatigue is a

phenomenon involving many refractory periods. The absolute refractory period

of a neuron determines a maximum rate at which it can be fired. Repeated firing

of a neuron at, or close to, this rate produces an increase in threshold, making it

more difficult to fire the neuron. This increase in threshold is the phenomenon
commonly called "fatigue."]
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The fourth model of self-reproduction which von Neumann con-

sidered was a continuous model. He planned to base this on a system

of non-linear partial differential equations of the type which govern

diffusion processes in a fluid. Von Neumann had worked on non-

linear partial differential equations, and wanted to use automata

heuristically to solve theoretical problems about such equations (cf.

pp. 33-35 above). In the case of the continuous model of self-reproduc-

tion, he planned to proceed in the reverse direction, using non-linear

partial differential equations to solve a problem of automata theory:

the logical and mathematical nature of the process of self-reproduc-

tion. This was part of von Neumann's general plan to employ the

techniques and results of that branch of mathematics known as

y analysis to solve problems in automata theory (cf. pp. 25-28 above).

The physics, chemistry, biology, and logic of a self-reproducing

system are very complex, involving a large number of factors; for

example, mass, entropy, kinetic energy, reaction rates, concentration

of enzymes and hormones, transport processes, coding, and control.

All the essential properties of the self-reproducing system must be

represented in the equations by functions or dependent variables.

Von Neumann recognized that a system of simultaneous non-linear

partial differential equations adequate to account for self-reproduction

would be much more complex than the systems usually studied.

Von Neumann had been trained as a chemical engineer and was

therefore familiar with complex chemical reactions. He had also

applied mathematics to complex physical systems of various kinds.

He probably thought of the differential equations of self-reproduction

in connection with his proposed excitation-threshold-fatigue model

of self-reproduction. Assume that the cellular model is reduced to the

excitation-threshold-fatigue model. The task then becomes that of

formulating the differential equations governing the excitation,

threshold, and fatigue properties of a neuron. The following processes

are involved in neural activity. 8 The neuron is stimulated by inputs 1

from other neurons. When the aggregate of these inputs reaches the

threshold of the neuron, it excites the neuron by triggering a flow of

sodium ions from the outside to the inside of the cell body. The flow

or diffusion of ions causes the cell body to become depolarized. This

diffusion and depolarization is then transmitted down the axon and

constitutes the firing of the neuron. The firing is followed by a diffu-

y sion of potassium ions from the inside of the neuron to the outside,

8 [For a complete description see Eccles, The Neurophysiological Basis of

Mind.]
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which repolarizes the neuron. The chemical balance of sodium and

potassium is restored still later.

It is clear from the preceding description of the excitation, thresh-

old, and fatigue processes of the neuron that chemical diffusion plays

a fundamental role in these processes. This explains why von Neu-

mann chose partial differential equations of the diffusion type for his

continuous model of self-reproduction. The reason for von Neumann's
choice of non-linear, rather than linear, differential equations is also

k
clear. The kinematic, cellular, and excitation-threshold-fatigue models

all show that switching operations (e.g., threshold, negation) as well

as control loops involving branching, feedback, and delay, are essen-

tial to the logical, informational, and organizational aspects of self-

reproduction. To model these discrete phenomena in a continuous

system it is necessary to use non-linear partial differential equations.

The preceding plan for constructing the continuous model starts

with a discrete system and proceeds to a continuous system. The
cellular model of self-reproduction is developed first, it is then reduced

to the excitation-threshold-fatigue model, and finally, this model is

described by non-linear partial differential equations. The reverse

procedure is often followed in science, and von Neumann was, of

course, familiar with it. One takes a continuous system, such as a

fluid with shock waves in it, and approximates this system by dividing

it up into discrete cells, treating everything in a cell as if it were in the

same state. In this way, the differential equations of the continuous

system are replaced by the difference equations of the discrete system.

One may then solve the difference equations on a digital computer,

and under appropriate conditions the solution will approximate the

solution of the differential equations.

But whatever the order of inquiry, a system of differential equa-

tions and the corresponding difference equations represents essentially

the same phenomena. The transition rule for the cellular model (Ch.

2 below) is the difference equation version of the system of partial

differential equations of the continuous model. The design of the pri-

mary automaton which reproduces itself corresponds to the boundary

conditions on these partial differential equations. Another way to view

the contrast between the continuous and cellular models is in terms

of the difference between an analog and a digital computer. An analog

J computer is a continuous system, and a digital computer is a discrete

system. Thus von Neumann's continuous model of self-reproduction

stands in the same relation to analog computers as his cellular model

of self-reproduction stands to digital computers. In Section 12 of his

"Probabilistic Logics and the Synthesis of Reliable Organisms from
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Unreliable Components," he proposed a scheme for representing and

processing digital information in an analog device. His continuous

model of self-reproduction should be compared with this scheme.

Von Neumann's continuous model of self-reproduction should also

be compared with some work of Turing. In "The Chemical Basis of

Morphogenesis,' ' Turing analyzed morphogenesis by solving differ-

ential equations which describe the interaction, generation, and

diffusion of chemical substances. Turing confined himself almost

entirely to linear differential equations, but he touched on non-linear

differential equations.

Von Neumann had been interested in the applications of probability

theory throughout his career; his work on the foundations of quantum
mechanics and his theory of games are examples. When he became

interested in automata, it was natural for him to apply probability

theory here also. The Third Lecture of Part I of the present work is

devoted to this subject. His "Probabilistic Logics and the Synthesis

of Reliable Organisms from Unreliable Components" is the first work

on probabilistic automata, that is, automata in which the transitions

between states are probabilistic rather than deterministic. Whenever

he discussed self-reproduction, he mentioned mutations, which are

random changes of elements (cf. p. 86 above and Sec. 1.7.4.2 below).

In Section 1.1.2.1 above and Section 1.8 below he posed the problems

of modeling evolutionary processes in the framework of automata

theory, of quantizing natural selection, and of explaining how highly

efficient, complex, powerful automata can evolve from inefficient,

simple, weak automata. A complete solution to these problems would

give us a probabilistic model of self-reproduction and evolution.
9

]

1.2 The Role of Logics—Question (A)

1.2.1 The logical operations—neurons. In evaluating question (A),

one must obviously consider automata which possess organs that can

express the essential propositions of logics and which need not possess

any other organs. This can be done by using organs each of which

possesses two stable states, corresponding to the basic truth values

of true and false in logics. It is convenient to use a plausible physiologi-

cal analogy and to designate these organs (whatever they are or are

thought to be in reality) as neurons, and the two above states as

excited and quiescent, respectively. It is also convenient to attach to

these states digital (arithmetical) symbols, namely 1 and 0, respec-

9 [For some related work, see J. H. Holland, "Outline for a Logical Theory of

Adaptive Systems, " and "Concerning Efficient Adaptive Systems."]
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tively. 10 The familiar structure of logics can then be conveyed to an

automaton built from such organs by connecting them with lines

representing the logical implications, and by introducing a separate

species of basic organs, i.e., of neurons, for each basic logical opera-

tion. 11 In the usual propositional calculus these are and, or, and not,

to be designated by •, +, and —
,
respectively. 12 The lines which

control the neuron's behavior, i.e., which represent the logical varia-

bles that enter into the basic logical operation or function to which

the neuron corresponds, are its inputs; the lines through which this

neuron expresses its resulting behavior, i.e., which represent the value

of the logical function in question, are the outputs. These are usually

the inputs of other neurons. Instead of attributing to a neuron several

outputs, it is preferable to allow only one, and to split it afterwards

into as many branches as necessary. The time-element in the func-

tioning of a neuron is best expressed by stipulating that the state

prescribed by the logical function corresponding to the neuron (i.e.,

the value of that function) is assumed a fixed delay time r after the

neurons that control this behavior have assumed their relevant states.

That is, the response of a neuron (on its output line) occurs a fixed

delay time r after the stimuli (on its input lines). It is unnecessary to

allow propagation delays along lines; i.e., an output may be instan-

taneously active wherever it is an input. It is simplest to assume that

all relevant events take place at times t that are integer multiples

of r: t = ut, n = 0, zfcl, ±2, • • •
. Next, r may be chosen as the unit

of time: r = 1, and so always t = 0, zbl, ±2, • • • .

The basic neurons referred to above are shown in Figure 3. Their

behavior is described by the following rules:

1. a, b are the input lines; c is the output line of this neuron.

2.1. The + neuron is excited at time t if and only if either the neuron

with output line a or the neuron with output line b is excited at

time t — 1.

2.2. The • neuron is excited at time t if and only if both the neuron

with output line a and the neuron with output line 6 are excited

at time t — 1.

2.3. The — neuron ["minus neuron"] is excited at time t if and only

if the neuron with output line a is not excited (i.e., is quiescent)

at time t — 1.

10 Boolean algebra is then applicable.
11 McCulloch and Pitts, "A Logical Calculus of the Ideas Immanent in

Nervous Activity."
12 Von Neumann, ' 'Probabilistic Logics and the Synthesis of Reliable Or-

ganisms from Unreliable Components," Sec. 4.
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The time delay caused by the operation of each neuron guarantees

the effective and constructive character of the logical system arrived

at in this manner. 13 It is easily seen—in fact it is essentially inherent

in the correspondence between the species of neurons introduced and

the basic operations of logics (cf . above and Fig. 3)—that automata

built from these organs can express all propositional functions in

logics. 14 Beyond this, the inclusion of inductive processes, and more

generally, of all processes that are permissible in finitistic logics, re-

quires a deeper analysis. 15 It brings in one substantively new element:

the need for an arbitrarily large (finite, but freely adjustable in size)

memory. This ties in with question (B) and will be considered sub-

sequently.

1.2.2 Neural vs. muscular functions. Question (A) involved merely

logical determinations; therefore it required only (at least directly

only; cf., however, the last remark in Sec. 1.2.1) organs with two

states, true and false. These two states are adequately covered by the

neural states of excitation and quiescence. Question (B), on the other

hand, calls for the construction of automata by automata, and it

necessitates therefore the introduction of organs with other than

logical functions, namely with the kinematical or mechanical attri-

butes that are necessary for the acquisition and combination of the

organs that are to make up the automata under construction. To use

a physiological simile, to the purely neural functions must be added

at least the muscular functions.

At this point several alternatives open up.

1.3 The Basic Problems of Construction—Question (B)

1 .3.1 .1 The immediate treatment, involving geometry, kinematics, etc.

The most immediate approach is this. The constituent organs are the

neurons and lines necessitated by (A), plus such additional organs as

(B) (i.e., the present discussion) will require. These constituent organs

are to be conceived of as physical objects in actual space. Their acqui-

sition and combination (including the establishing of rigid connections

between them) must accordingly take place in actual space, i.e.,

3-dimensional, Euclidean space. (Further variations on the dimen-

sionality and geometrical character of the space are possible, but we

13 McCulloch and Pitts, op. cit. Von Neumann, op. cit., Sees. 2.1 and 3.3.
14 McCulloch and Pitts, op. cit. Von Neumann, op. cit., Sec. 3.

15 McCulloch and Pitts, op. cit. Von Neumann, op. cit., Sees. 3.3 and 5.1.

[Von Neumann also mentioned Kleene. He probably intended to refer to the

Rand Corporation version of "Representation of Events in Nerve Nets and
Finite Automata."]
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will not consider them at this point. Cf., however, the crystal-lattice

discussions later on.) The constituent organs that are needed for the

automaton construction must thus be found and acquired in space,

they must be moved and brought into contact and fastened together

in space, and all automata must be planned as true geometrical (and

kinematical and mechanical) entities. The functions that were de-

scribed above, rather symbolically, as muscular, will now be very

nearly truly muscular, etc. Different degrees of abstraction are still

possible; for example, one may or may not pay attention to the truly

mechanical aspects of the matter (the forces involved, the energy

absorbed or dissipated, etc.). But even the simplest approach, which

disregards the above-mentioned properly mechanical aspects entirely

requires quite complicated geometrical-kinematical considerations. 16

Yet, one cannot help feeling that these should be avoided in a first

attempt like the present one: in this situation one ought to be able

to concentrate all attention on the intrinsic, logical-combinatorial

aspects of the study of automata. The use of the adjective formalistic

at the beginning of Section 1.1.1.1 was intended to indicate such an

approach—with, as far as feasible, an avoidance of the truly geomet-

rical, kinematical, or mechanical complications. The propriety of this

desideratum becomes even clearer if one continues the above list of

avoidances, which progressed from geometry, to kinematics, to me-

chanics. Indeed, it can be continued (in the same spirit) to physics,

to chemistry, and finally to the analysis of the specific physiological,

physico-chemical structures. All these should come in later, succes-

sively, and about in the above order; but a first investigation might

best avoid them all, even geometry and kinematics. (A certain amount

of primitive geometry and vestigial kinematics will appear even so,

as will be seen later.)

1.3.1.2 The non-geometrical treatment—structure of the vacuum. A
more sophisticated approach, which goes far towards meeting the

desiderata expressed above, is this. 17

The need to use geometry (and kinematics) merely expresses the

fact that even the vacuum (the sites not now occupied, but poten-

tially occupiable, by the constituent organs of automata) has a struc-

ture. Now 3-dimensional Euclidean space represents (or, represents

with an approximation that is sufficient in the situation envisaged)

the actual "structure of the vacuum." Nevertheless, this structure

involves a number of traits which are unnecessarily complicating.

16 Von Neumann, "The General and Logical Theory of Automata," Collected

Works 5.315-318. [See also the Fifth Lecture of Part I above.]
17 [Von Neumann was going to refer to S. Ulam here. See Sec. 1.1.2.3 above.]
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While these will have to be considered at a later stage, it is desirable

to eliminate them in the first approach. We will accordingly try to

do this.

1.3.2 Stationarity—quiescent vs. active states. The main complication

that we wish to remove is the influence of kinematics, that is, the

necessity of moving objects around. It is preferable to have stationary

objects only, normally in a quiescent state, and to postulate a system

which will, under suitably and precisely defined conditions, transfer

them from the quiescent state into an active state—or into a particular

one of several possible active states.

1.3.3.1 Discrete vs. continuous framework. Next, these stationary

and normally quiescent objects could be thought of as discrete en-

tities, or as (infinitesimal) elements of a continuously extended

medium. In the first case we will have a granular or cellular structure,

while in the second case we are led back to a continuous space,

more or less like that of Euclidean geometry.

1.3.3.2 Homogeneity: discrete (crystalline) and continuous (Eu-

clidean). We now make the simplifying, but also very restrictive

assumption,
18
that this spatial or quasi-spatial substratum be homoge-

neous. That is, the granular structure of the first case must have

crystalline symmetry,
19
while the continuous space of the second case

must be Euclidean.
20

In both cases this degree of homogeneity falls

short of absolute homogeneity. Indeed, we have only postulated the

homogeneity of the spatial (or, more broadly, combinatorial) matrix

which carries the (quiescent or active) objects referred to above—the

basic organs—but not the homogeneity of the population of these

objects. That is, in the first (discrete) case, we have not postulated

that all the cells of the crystal behave according to the same rules;

and in the second (continuous) case, we have not postulated that

the continuous, space-filling medium be subject everywhere to the

same rules. Depending on whether this is, or is not, postulated, we
will say that the system possesses, or does not possess, intrinsic, or

functional, homogeneity?
1

18 Calling for stronger results. [That is, it is more difficult to construct a self-

reproducing automaton in a homogeneous medium than in an inhomogeneous
medium.]

19 [A crystal is a solid body having a regular internal structure and bounded
by symmetrically arranged plane surfaces intersecting at definite and charac-

teristic angles. The regular internal structure consists of the rows and patterns

of atoms of the crystal. The faces of the crystal express this regular internal

structure externally.]
20 [Apparently von Neumann was going to explain in this footnote why he

was excluding the non-Euclidean spaces of Bolyai-Lobachevski and Riemann.]
21 [In the discrete (crystalline, granular, cellular) case, functional homoge-
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Beyond this, an even more complete homogeneity would exist if all

(discrete or infinitesimal) elements were in the same state, for exam-

ple, in the quiescent state (cf. above). In this case we will speak of

total homogeneity or of total quiescence, respectively. This can obviously

not be postulated in general, since it would exclude any positive and

organized functioning of the automaton, for example, all moves in

the sense of questions (B)-(E) of Section 1.1.2.1 above. It is, how-

ever, quite reasonable to strive to assume total quiescence as the

initial state of an automaton. This cannot be absolutely enforced,

since with the usual systems of rules total quiescence is a self-per-

petuating state (cf. later). It will, however, be practical to assume a

totally quiescent initial state and to proceed from there with the

injection of a minimum amount of external stimulation (cf. later).

1.3.3.3 Questions of structure: (P)-(R). The point made at the

beginning of Section 1.3.3.2, namely, that the homogeneity assump-

tions of Section 1.3.3.2 are seriously restrictive, is worth elaborating

somewhat further. Indeed, even the manner in which the basic organs

of the discussion of question (A) (the neurons of Section 1.2.1) are

ordinarily strung together (cf. later), violates the first principle of

homogeneity formulated in Section 1.3.3.2, that of the underlying

granular structure, i.e., its crystalline symmetry. This degree of

homogeneity can, however, be attained by some rather obvious and

simple tricks, as will be seen later.

The systems that are thus obtained will, however, still violate

the further, stricter, principle of homogeneity formulated in Section

1.3.3.2, that of functional homogeneity. This is clearly so, as long as

several species of neurons are used (cf. Sec. 1.2.1, particularly Fig.

3) and these have to be distributed over the crystal lattice in an

irregular (i.e., not crystalline-symmetric) manner. However, this

use of several species of neurons and this distribution of them in an

irregular manner are natural if one approaches the problem in the

way which is the obvious one from the point of view of the ordinary

logical and combinatorial techniques (cf. later). We will see that this

difficulty, too, can be overcome and that functional homogeneity

can be achieved. This, however, is considerably less easy, and it

constitutes, in fact, one of the main results of this paper.

The homogeneity problem also raises some ancillary questions,

which will successively occupy us when their respective turns come.

They are the following

:

neity means that each cell is occupied by the same finite automaton and each
such automaton is connected to its neighbors in the same way. The particular

cellular structure which von Neumann adopts in Ch. 2 is functionally homoge-
neous; see Sec. 1.3.3.5 below.]
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(P) Which is the minimum usable dimensionality? (This question

arises both in the first—discrete, crystalline—and in the second

—continuous, Euclidean—cases of Sees. 1.3.3.1 and 1.3.3.2.)

(Q) In connection with functional homogeneity, can we require

isotropy
22

in addition to homogeneity? {In the crystalline case

this is meaningful for the regular crystal class only.
23

Cf. also

question (R).}

(R) In the crystalline case, which crystal classes are usable? Or, to

introduce our real aim explicitly, what is the highest degree of

regularity that can be used?
23

With respect to question (P), one would expect that the dimen-

sionality 3 is usable and probably minimal. In fact even 2 is usable,

while it seems unlikely that 1 should be, at least in combination

with any otherwise plausible postulates.
24

These questions will be

considered in some detail later.

Question (Q) will be considered later; it will appear that isotropy

can be achieved, although non-isotropic models, too, can be of con-

siderable interest.

As to question (R), we will use the maximum regularity, which is

reasonably interpreted as the (body-centered ) cubic class in 3 dimen-

sions, and the corresponding quadratic class in 2 dimensions, the

emphasis being, in view of what was said about question (P) above,

on the latter. Some other classes, however, are also of interest, as will

be seen later.

1.3.3.4 Nature of results, crystalline vs. Euclidean: statements (X)~

(Z). To conclude this group of observations, we note this. We sur-

mise that the comparative study of the two cases of Section 1.3.3.1

{i.e., of the crystalline (discrete) and of the continuous (Euclidean)

case} will prove very rewarding. The available indications point

strongly towards these conclusions:

22 [A substance or space is isotropic insofar as it has the same properties in

all directions. In the crystalline (discrete) case, functional isotropy means that

each cell is connected to each of its immediate neighbors in the same way. The
particular cellular structure which von Neumann adopts in Ch. 2 is functionally

isotropic; see Sec. 1.3.3.5 below.]
23 Crystal classes in two and three dimensions. [Crystals are divided into

six groups or systems according to the number and nature of the axes of sym-
metry. Crystals belonging to the cubic system (also called "the isometric sys-

tem" and "the regular system") are the most symmetrical of all crystals. In a
crystal of the cubic system the three crystallographic axes of reference are at

right angles to each other and are equal in length. Crystals having a cubic cell

and crystals having an octahedral cell are the simplest of the forms of this

class.]
24 [Von Neumann was going to make a reference to Julian Bigelow and H.

H. Goldstine here. They suggested modeling self-reproduction in 2 rather than
3 dimensions.]
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(X) The general possibilities are about the same in the two cases.

(Y) The continuous case is mathematically much more difficult than

the crystalline case.

(Z) If and when the appropriate analytical methods to deal with the

continuous case are developed, this case will be more satisfac-

tory and more broadly and relevantly applicable than the

crystalline case.

These matters will be discussed in somewhat more detail later. We
will make now only one more observation, which relates to the diffi-

culties referred to in conclusions (Y) and (Z). These difficulties are

due to the fact that, in the case in question, the mathematical problem

becomes one of a system of non-linear, partial differential equations.

It may be of some significance that non-linear partial differential

equations, which in many directions define and limit our mathemati-

cal horizon, should make their appearance in this context also.

The difficulties referred to in (Y) and (Z) will cause us to direct

our attention primarily to the crystalline case. In fact, we will from

now on always have this case in mind, except where the opposite is

expressly stated.

[1.3.3.5 Homogeneity, quiescence, and self-reproduction. In writing

the present Part II of this volume, von Neumann was going through

a process of reasoning which was to terminate in his cellular model

of self-reproduction. At these early stages of the process he was

exploring various possibilities, leaving specific choices until later. As

the inquiry proceeded his terminology necessarily changed somewhat.

Thus the "quiescence" of Section 1.3.3.2 above divides into "unexcita-

bility" and "quiescence of an excitable cell" in Sections 1.3.4.1 and

1.3.4.2 below. A brief preview of the final outcome may help the

reader to follow the development of von Neumann's thought.

Von Neumann's cellular structure is described in detail in Chapter

2 below. He chose an infinite 2-dimensional array of square cells.

Each cell is occupied by the same 29-state finite automaton, and

each such automaton is connected to its four immediate neighbors in

exactly the same way; that is, the transition rule of Chapter 2 below

is the same for each cell. Hence this cellular structure is "functionally

homogeneous" in the sense of Section 1.3.3.2 above. Since each 29-

state automaton is connected to each of its four neighbors in the same

way, this structure is also isotropic in the sense of Section 1.3.3.3

above. Functional homogeneity and isotropy have only to do with

structure, however, and not with content or state. Consequently, if

different cells of a region of the cellular structure are in different

states, one part of the region may act in one way and send informa-
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tion in one direction, while another part of the region acts in a differ-

ent way and sends information in a different direction.

The 29 states each cell is capable of assuming fall into three cate-

gories: unexcitable (1), excitable (20), and sensitized (8). These

are listed later in Figure 9.

The unexcitable state U is utterly quiescent. This state plays a

fundamental role with respect to the information content of the

cellular structure, for this structure is operated in such a way that at

each moment of time only a finite number of cells of the structure are

in some state other than the unexcitable state. In this respect, the

unexcitable state of von Neumann's system is analogous to a blank

square on the tape of a Turing machine. Indeed, von Neumann
represented zero in his linear array L by the unexcitable state U; see

Section 1.4.2.5 below.

The 20 excitable states fall into three classes. There are 4 confluent

states C CC ' , where e and e range over 0 and 1; the value "0" sym-

bolizes quiescence, and the value "1" symbolizes excitation. There

are 8 ordinary transmission states T0ac and 8 special transmission

states Ti ae , where a = 0, 1, 2, 3 and e = 0, 1 as before. Eight trans-

mission states are quiescent and 8 are excited. The sensitized states are

transient in nature, each lasting exactly 1 moment of time.

The set of 10 states consisting of the unexcitable state U and the

quiescent states Coo , Tuao (u = 0, 1; a = 0, 1, 2, 3) has this property:

if every cell of the infinite cellular structure is in 1 of these 10 states,

the system will never change (i.e., no cell will ever change state).

The difference between the unexcitable state U and the 9 quiescent

(but excitable) states Coo , Twao is in the way they respond to stimuli

(excitations). Stimuli entering a cell which is in the unexcitable state

U convert that cell into 1 of the 9 quiescent states C0o , Tuao . This

conversion is the direct process of Section 2.6 below. The direct process

takes 4 or 5 units of time, the sensitized states serving as interme-

diaries in the process.

A stimulus entering a cell in 1 of the 20 excitable states C e6 '
,

TMac (e, e', u = 0, 1; a = 0, 1, 2, 3) does one of two things. It may
change the cell back to the unexcitable state U; this is the reverse

process of Section 2.5 below. Alternatively, this stimulus may be

switched, combined with other stimuli, and delayed in the usual way.

In particular, a quiescent finite automaton may be embedded in an

area & of the cellular structure by putting each of the cells of & in 1

of the 10 states U, Coo , and Tuao . If such a finite automaton is ap-

propriately designed, it will compute in the usual way when it is

stimulated (activated).
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The temporal reference frame for the cellular structure consists

of the times • • • — 3, — 2, — 1, 0, 1, 2, 3, • • •
. Von Neumann did not

say exactly how he planned to use this temporal reference frame, but

the following is consistent with what he said. All cells are in the unex-

citable state for negative times. An initial cell assignment is a finite

list of cells together with an assignment of a state to each cell of the

list. At time zero an initial cell assignment is imposed on the cellular

structure from the "outside," all cells not in the assignment list being

left in the unexcitable state. Thereafter the cellular system runs

according to the transition rule of Chapter 2. Each initial cell arrange-

ment determines a unique history of the infinite cellular structure.

We will call the infinite cellular structure together with an initial

cell assignment an infinite cellular automaton.

An infinite cellular automaton which models self-reproduction

operates as follows. The finite automaton E of Section 1.6.1.2 below

constitutes an initial cell assignment. More specifically, the initial

or starting state of this finite automaton E is an initial cell assignment.

We impose this initial cell assignment on the cellular structure at

time zero, thereby embedding the finite automaton E in the cellular

structure. Let & be the area of cells affected, so that initially all cells

outside & are unexcitable. The logical structure of E is such that at

some later time r another copy of E will appear in another area o!

of the cellular structure. That is, the state of each cell of &' at time

r is identical to the state of the corresponding cell of & at time zero.

Thus E reproduces itself in area d' . In summary, this infinite cellular

automaton has only one copy of E embedded in it at time zero, but

two copies of E embedded in it at time r. This is self-reproduction.

Let us look at the temporal development of an infinite cellular

automaton. At negative times it is totally homogeneous in the sense

of Section 1.3.3.2 above, all cells being unexcitable. At time zero this

total homogeneity is modified by the introduction of inhomogeneity

in a finite area. This inhomogeneity will, in general, propagate into

surrounding areas. In the case of self-reproduction, the inhomogeneity

of area Ct spreads until area d' is organized in the same way as area d.

The above treatment of infinite cellular automata makes no essen-

tial use of negative times. Since all cells are unexcitable at these times

we could use only the times 0, 1, 2, 3, • • • without any loss of general-

ity. Von Neumann did not say why he introduced negative times. It

is possible that he planned to use them in connection with a probabi-

listic model of self-reproduction and evolution (see the end of Sec.

1.1.2.3 above).]

1.8.4-1 Simplification of the problems of construction by the treatment
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according to Section 1.3.1.2. We can now return to the original thought

of Sections 1.2.2-1.3.3.1, that is, to the necessity of having organs

that perform analogs of the muscular rather than of the neural func-

tion. In other words, we need organs which are concerned with the

acquiring, positioning, and connecting of the basic organs of the

automata under construction, rather than with purely logical opera-

tions in the sense of Section 1.2.1. Since the properly kinematic

aspects of "acquiring" and "positioning" have been removed by the

observations of Sections 1.3.1.2 and 1.3.2, the nature of the function,

referred to above as an "analog of the muscular," must now be re-

considered.

The remark at the end of Section 1.3.2 makes it clear that this

function now appears under the aspect of causing an object—or, to

use a terminology suggested by Section 1.3.3.1, a cell—which is in a

quiescent state, to go over into a suitable active state. Now the logical

functions, as discussed in Section 1.2.1, also do this, but there is a

difference here or, at least, a possibility of a difference. The nature of

this difference can be best illustrated by a physiological simile.

1.8.4.2 Quiescence vs. activity; excitability vs. unexcitability; ordinary

and special stimuli. A neuron may be quiescent or active, but it is

at any rate potentially active; that is, if is an excitable cell. Connective

tissue, on the other hand, consists of unexcitable, truly passive cells.

So far the difference between an excitable, but (momentarily) quies-

cent cell, and a (permanently) passive cell is obvious. Now let us for

a moment introduce the fiction that the growth of neurons (i.e., of

excitable cells) occurs not by the formation of new cells, but by the

transformation of existing, unexcitable cells into excitable ones. It

should be noted that, while this is not so in reality, it is the arrange-

ment that fits best into the picture of stationary cells introduced in

Section 1.3.2. To reconcile this with reality, one may have to inter-

pret the absence of a cell as the presence of one in a special, particu-

larly unexcitable state. This concept is in reasonable harmony with

the one relating to a "structure of the vacuum," as used in Section

1.3.1.2.

Such a transformation must itself be induced by some special

stimuli, i.e., by some special active states of neighboring cells. The
ordinary stimuli (i.e., the ordinary active states) which control the

logical functions discussed in Section 1.2.1 cannot do this. These

stimuli control transitions between quiescent and ordinary active

states, but in excitable cells only, and without ever changing the

species (in the sense of Sec. 1.2.1) of the cell (neuron) in question.

Indeed it was just with respect to these ordinary stimulations that
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unexcitability was defined above. In order to provide an equivalent

of growth, the special stimulations referred to above must be able to

cause transitions from unexcitability to excitability, and also to de-

termine the specific species (in the sense of Sec. 1.2.1 ) of the excitable

cell (neuron) thus created.

These concepts permit us to define the difference between quies-

cence (with excitability) and unexcitability; the former responds to

(i.e., is removed by) ordinary stimuli, the latter only to special ones.

This has, of course, only shifted the distinction into one between

ordinary and special stimuli, that is, into a distinction between ordi-

nary and special active states. Leaving the physiological simile, and

returning to the mathematical problem at hand, the matter still

presents some dubious aspects.

1.3.4.3 Critique of the distinctions of Section 1.3.4.2. Indeed, one

must now consider critically the usefulness of the distinction between

ordinary and special stimuli. As outlined above, the underlying idea

is this. Ordinary stimuli are to be used for logical operations, taking

the species of the neurons that are involved as fixed; that is, ordinary

stimuli are to be used for the control and utilization of already satis-

factorily organized sub-assemblies. Special stimuli are to be used

for growth operations, involving the introduction of excitability, to-

gether with a new determination of the neuronic species, into pre-

viously unexcitable, or otherwise different areas. In other words,

special stimuli are used for the organization (according to some logi-

cally determined plan) of hitherto unorganized (or differently organ-

ized) areas.

This distinction is certainly convenient for a first approach, since

it permits one to keep conceptually fairly distinct functions quite

sharply distinct in their actual embodiment and performance. We will

therefore adhere to it strictly in our first constructions (cf. later).

However, it is quite possible to relax it by various logical and combina-

torial devices to varying degrees, up to (and including) complete

obliteration. These turn out subsequently to be quite desirable for

various mathematical and conceptual reasons, and we will therefore

introduce them in our later constructions (cf. later).

[ Logical functions and growth functions are fairly distinct con-

ceptually. In his preliminary discussion von Neumann made a sharp

distinction between their respective representations in his cellular

system. Logical functions are performed by ordinary stimuli, and

growth functions are performed by special stimuli. Later he relaxed

the distinction somewhat by using both types of stimuli for both

types of functions.
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The final distinction between ordinary and special stimuli is shown

in Figure 9. Both ordinary and special transmission stimuli bring

about "growth" from the unexcitable state U to one of the nine

quiescent states Coo >
TM «o (u = 0, 1; a = 0, 1, 2, 3); this is the direct

process of Section 2.6 and Figure 10 below. Special transmission

stimuli change an ordinary transmission state T0« € (a = 0, 1, 2, 3;

e = 0, 1) or a confluent state C €C ' (e, e = 0, 1) into the unexcitable

state U, while ordinary transmission stimuli change a special trans-

mission state Ti ac (a = 0, 1, 2, 3; c = 0, 1) into the unexcitable

state U; this is the reverse process of Section 2.5 below.

The logical functions of disjunction, conjunction, and delay will

normally be performed by arrays of ordinary transmission and con-

fluent states. The logical function of negation is not directly repre-

sented in von Neumann's system. Instead, negation will be accom-

plished by breaking a communication path and later restoring it.

The breaking will be done by the reverse process and the restoring

by the direct process. An example is given in Figure 17 of Section 3.2

below.]

1.4 General Construction Schemes—Question (B) Continued

1.4.1.1 Construction of cell aggregates—the built-in plan. The discus-

sion up to this point (i.e., in Sees. 1.2.2-1.3.4.3) dealt only with the

first part of question (B), the immediate problems of the construc-

tion of one automaton by another automaton. We can now pass to

the second part of question (B), i.e., consider by what means a single

automaton can be made to construct broad classes of other automata,

and how variable, but essentially standard, attachments can be used

to facilitate and extend this process.

Our discussion dealt so far only with the question: By what means

can a single cell of specified characteristics be created? In this respect

we developed some orienting principles. There remains the question

of how this operation is to be controlled in all its details. It is clear

that this will have to be done by the logical section of the primary

(parent) automaton, which was considered in Section 1.2.1. It is

also natural that this logical section of the primary automaton must

supervise and sequence the multiplicity of acts of single-cell creation,

which are necessary to produce the complete secondary (constructed

)

automaton.

This "sequencing" of the single cell creations has to be controlled

by a logical pattern which is already laid out in the logical section of

the primary automaton. Such a "logical pattern" is obviously neither

more nor less than the complete "plan" of the secondary automaton
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—functionally laid out within the primary automaton in "terms"

that the primary automaton can "understand" and act on.

Thus the plan of the secondary automaton must be "built into" the

primary automaton, presumably in terms of logical connections in the

sense of Section 1.2.1.

1.4.1.2 The three schemes for building in multiple plans—the para-

metric form. The conclusion of Section 1.4.1.1 is that a primary autom-

aton, constructed for this purpose, is prima facie (i.e., assuming

the simplest type of design, which presents itself most immediately)

suited to construct one and only one secondary automaton. Generali-

zations beyond this level are, however, immediate.

First, it is, of course, possible to have the plans of several (different)

secondary automata built into the primary. Second, it is possible to

incorporate the logical facilities that will make the primary autom-

aton construct a specific secondary several times, e.g., a certain,

preassigned number of times. Third, the plan of the secondary may
contain a number of numerical parameters; and this plan can be

built into the primary in this (variable) parametric form, together

with facilities that make it possible to substitute any desired numeri-

cal values for these parameters.

The third scheme—or, rather, the combination of the second and

the third schemes—is the most general of these. In their immediate

form, however, these still contain a limitation, that is, a limitation of

the numbers that can be used for the parameter values (third scheme

)

and for the number of repetitions (second scheme). Indeed, these

numbers must be present in some form in the interior of the primary

automaton, say in a digital representation. Assume that p such num-

bers are involved, and that they are all integers ^ 0, say, vi ,
• • •

,

vp . Let each one of those cells, which are to be used for their repre-

sentation, have k states available for this purpose. It is best to in-

terpret these states as the base k digits 0, 1, • • •
, k — 1. Let

such cells be available for vi , where i = 1, • • •
, p; this requires a

total of n = ni + • • • + np cells. Vi is thus expressed by n t digits in a

base k digital notation; hence it is limited to the k
n
i values 0, 1, • • •

,

k
n
i - 1.

1.4.2.1 The descriptive statement L for numerical parameters. The
limitation just described can be circumvented by a simple trick: let

these cells lie "outside" (i.e., not within the area of the primary

automaton, but next to it), in the external, otherwise quiescent, re-

gion of the crystal. They might, for example, form a linear array L
extending in the right hand (i.e., positive x) direction away from the

area of the primary automaton. The k states used for these "nota-

tional" purposes must, of course, also be of a quasi-quiescent charac-
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ter, i.e., such that they will normally not disturb (stimulate or other-

wise transform) each other or the surrounding quiescent cells. This,

however, is a desideratum that is easy to meet (cf. later). The pri-

mary automaton must then be endowed with the ability to establish

contact with all parts of this linear array L, and to have its operations

controlled, in the desired sense, by the "notational" (i.e., base k

digital) states of the cells of L. One might, at first sight, expect

difficulties in trying to do this for all possible L (for all possible sizes

of L, i.e., of n) with a fixed, limited primary automaton. All these

difficulties can, however, be overcome by fairly straightforward

methods, as will appear when this matter is considered in detail [See

Sec. 1.4.2.5 below]. We will mention here only one of them.

One might think that the "exploration" of L is not possible without

specifying—i.e., expressing within the primary automaton—the size

of L, i.e., n. In fact, it would seem natural that p and all the v% ,
• • •

,

vp , must be so specified. This would again limit p and U\ ,
• • •

,
np ,

since the primary automaton is a fixed entity, and hence it would

limit L and through it the numbers that it represents.

This difficulty can be removed as follows. Let each cell in L have

k states for notational purposes as before; i.e., the states corresponding

to the digits 0, 1, • • •
, k — 1, and two additional states to be called

comma and period. (All of these states must be "quasi-quiescent" in

the sense indicated above.) Within L, the numbers p and v\ ,
• • •

,

vp consist only of cells in digital states. Now let L be lined up as

follows (proceeding from left to right, i.e., in the positive .t-direction).

The digits of p, a comma, the digits of v\ , a comma, • • •
, the digits

of Vp , a period. The primary automaton, in "exploring" L, can sense

the comma and the period and thereby ascertain the sizes of p and

of the vi ,
• • •

,
Vp no matter what these are.

14.2.2 Applications of L. The linear array L of Section 1.4.2.1

is the variable, but essentially standard attachment mentioned in

question (B). It is the simple addendum to the primary automaton,

which, although essentially quiescent and possessed only of the most

rudimentary structure, expands the active potentialities of that

automaton substantially, as appeared in Section 1.4.2.1. The possi-

bilities that are inherent in this device will, however, become really

clear only after this. The main application in this sense will be de-

scribed later [Sees. 1.5 and 1.6]. We will consider first a lesser applica-

tion.

1.4.2.8 Use of L as an unlimited memory for (A). The last men-

tioned application relates to the attachments to a purely logical

automaton, referred to in question (A).

The setup for purely logical functions (in the sense of (A), as dis-
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cussed in Section 1.2.1) fails to be universal because of the absence of

one constituent: an arbitrarily large memory which is finite but of

adjustable size (cf. the end of Sec. 1.2.1). The linear array L, as

described in Section 1.4.2.1, is just that. Hence L, with its ancillary

observation, exploration, and construction facilities, provides the

(variable, but in the essential respects standard) attachment to the

logical automaton, which bridges the gap to logical universality, as

indicated in question (A). It should be noted that the need for the

facilities ancillary to L, referred to above, means that componentry

which is normally called for in the primary (construction) automata

of (B) must also be introduced into the (logical) automata of (A),

if logical universality is an aim. For the details of all this, cf. later

[Chapters 4 and 5].

14-®4 Use of base two for L. One more remark about the cells of

L is in order: we can choose k = 2, i.e., let all representations of

numbers be base 2. Then each cell in L must have k + 2 = 4 states

for the purposes now under consideration (cf. the discussion in Sec.

1.4.2.1). If it is now desired to keep the number of states for nota-

tional purposes at 2, this can still be achieved. It suffices to replace

each cell of L by 2 cells, since a pair of 2-valued states allows 2
2 = 4

combinations.

The digitalization and punctuation scheme for L meets all the re-

quirements of Section 1.4.2.1. It is, however, not the only possible one.

The following is an obvious variant. Keep the punctuation states

(the comma and the period), as in Section 1.4.2.1. Instead of the two

base 2 digital states, designated 0 and 1, use only one, designated 1.

Designate a number v (an integer ^ 0), not by a sequence of 0's and

l's, which express its base 2 digital expansion, but simply by a se-

quence of v l's. This representation is a good deal longer than that

of Section 1.4.2.1 (v symbols instead of n, where n is the smallest

integer with 2
n > v, i.e., with n > 2

log v), but it is more simply

defined, and more simply exploitable (in the sense of the ancillary

functions referred to in Sec. 1.4.2.3). For a detailed consideration, cf.

later.

[14-®>5 The linear array L. It may be helpful at this point to

anticipate von Neumann's design of the mechanism for reading and

writing on an arbitrary cell of the unlimited linear array L.

Let us begin with a Turing machine, which is a finite automaton

connected to an indefinitely extendible or infinite tape. The tape is

divided into squares, each of which contains any one of a finite num-
ber of characters (i.e., is in any one of a finite number of states).

Let the basic alphabet consist of two characters: zero and one, repre-
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sented by a blank and a mark, respectively. At any given time the

finite automaton senses one square of the tape. It can change the

contents of this square (make a mark or erase a mark already there)

and move the tape one square to the left or right, so that at the next

moment of time it senses an adjacent square. Thus the finite autom-

aton can, in a finite amount of time, gain access to, read, and modify

any square of the tape.

It is clear that accessibility of an arbitrary tape square is the im-

portant thing, and having the tape move is only a means to this end.

Alternatively, we can have the tape stand still and the finite autom-

aton move back and forth along it. Or, we can have both the finite

automaton and the tape stand still, and let the finite automaton

communicate to an arbitrary square xn by means of a contractable

and indefinitely extendible "wire." The finite automaton can sense

and modify the state of square xn through this wire. Then the finite

automaton can extend the wire to square xn+i , or contract it to

square xn-i .

This last procedure is the one von Neumann used in his cellular

system. The details are given in Chapter 4 below. We will explain

the basic idea in connection with Figure 37. The memory control

MC is a finite cellular automaton occupying the area indicated in

that figure. L is an infinite array of cells extending to the right.

"Zero" is represented in cell xn by the unexcitable state U, and "one"

is represented by the quiescent but excitable state T030 , which is an

ordinary transmission state directed downward.

To read cell xn , the memory control MC sends a sequence of

stimuli around the connecting loop Ci in the direction of the arrows.

This sequence passes through xn without affecting its neighbors

xn-i and .rn+ i , is modified according to the state of xn , and returns

to the memory control MC with a representation of the contents of

xn . The memory control MC then writes on xn and either extends

the loop Ci so that it passes through cell xn +i , or contracts the loop

Ci so that it passes through cell xn-i . The timing loop C2 is used

in this extension-contraction process and is extended (or contracted

)

along with loop Ci .

There are finitely many basic characters to be represented on L,

including the period and comma. These are represented by binary

sequences of some length k, and each character is stored in k cells of

L. Initially, we will place a finite sequence of characters on L, of

which the last one, and only the last one, is a period. Now, the memory
control MC can sense the period and move it to the right or left as

it expands or contracts the information on L. Hence, though MC is
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of finite, fixed capacity, there is no bound to the amount of informa-

tion on L with which it can interact.]

1.5 Universal Construction Schemes—Question (C)

1.5.1 Use of L for non-numerical (universal) parametrization. The
schemes of Section 1.4.2.1 (together with Sec. 1.4.1.2) introduced an

important broadening of the class of secondary automata that arc

constructible by one, suitably given, (fixed) primary automaton, in

the sense of the second question of (B). They do not, however,

achieve immediately the construction universality that is the aim

of question (C). We will now get this, too, by introducing one further-

variation into the methods of Section 1.4.2.1.

The class of secondary automata which can be constructed accord-

ing to Section 1.4.2.1 by a single primary automaton is limited in this

sense. (We disregard for a moment the influence of Sec. 1.4.1.2.)

These (secondary) automata may represent a broad class, but they

must nevertheless all be particular specimens from a common species;

that is, their individual (construction) plans all derive from a common
master plan in which certain available parameters are specifically

numerically substituted. In other words, even though the specific

plan of the secondary automaton must no longer be built into the

primary automaton, nevertheless the underlying, generic plan—the

plan that controls all the subordinate plans—must be built in there.

1.5.2 The universal type of plan. Consider an arbitrary (but

specifically given) secondary automaton and the possible ways to

describe it. The following is certainly an adequate one:

(a) Specify the (two) x and the (two) y coordinates of the four

sides of a rectangular area in which the entire secondary automaton

is to be contained. Let these coordinates be X\
, 2/1 ,

x2 , and 2/2 . These

coordinates should be counted from an origin which is at a suitably

designated point within the area of the primary automaton.

It is actually better to introduce the side lengths a = x2 — x\ + 1,

0 = 2/2
— yi + 1 (assuming x\ S £2,2/1 ^ 2/2) of the rectangular

area containing the secondary, and to use the numbers £1,2/1, «, 0.

(b) According to (a) above, each cell within the rectangle covering

the secondary can be characterized by two coordinates i (= 0, 1, • •

a — 1), j (= 0, 1, " •
j P — 1). (To be precise, with respect to the

system of coordinates used in (a) above, the coordinates of the cell

i
y j are Xi + i, 2/1 + j*) This gives, as it should, a/3 cells in the rec-

tangle covering the secondary. Let £ be the number of states that

each one of these cells can assume, using accordingly an index X =

0, 1, •••,<£ — 1 to enumerate these states. Designate by \ij the
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state of cell which is desired (on the basis of the plan of the

secondary automaton in question) for the moment when the construc-

tion of this automaton is just completed.

It is clear from (a) and (b) that the secondary automaton is

completely characterized by the specification of the numbers x x ,

7/1 ,
a, j8 and X»v for all pairs i = 0, 1, • • •

, a — 1; j =* 0, 1, • • •
,

0-1-
Note that these numbers have the following ranges:

xi , yx = 0, ±1, ±2 - - • .

a
9 fi - 1,2, .

Xty 0, 1, • • •
, <£ — 1 for i = 0, 1, • • •

, a — 1;

/ ~ 0,1, ,0 - 1.

To conclude, x\
, y\ are better represented by specifying their

absolute values \xi\, \yi\ and two numbers e, 77:

{= 0 for xi = 0 1 f= 0 for yi^0\
e

{= 1 for xx < 0|,
77

\= 1 for 2/j < 0|.

Thus the sequence (of integers = 0)

(«, ^, l^il, |

r/i |,
a, /S,

(*) fa for < = 0,1, 1; j = 0, 1, ,0 - 1

[
(the X t y are to be thought of as lexicographically ordered by

contains a complete description of the desired secondary automaton,

in the condition—i.e., with the cell-states—actually desired for its

initial moment, immediately after completion.

This sequence of numbers may now be treated with the method

described in Section 1.4.2.1 for the simpler sequence that occurred

there (the sequence p, v\ ,
• • •

,
vp ). That is, we can form a linear

array of cells L, extending in the right hand (i.e., positive x) direc-

tion, and made up as follows: the numbers enumerated in formula (*)

in the order in which they appear there, each represented by its base

k digital expansion, any two consecutive ones separated by a comma,
and the last one followed by a period. The general description above

plays now precisely the role of the general plan of a class of secondary

automata, which contains parameters, as described in connection

with the third scheme in Section 1.4.1.2. In addition to this, the linear

array L introduced above is the exact equivalent of the linear array

L introduced in Section 1.4.2.1: it specifies the numerical values that

have to be substituted for the parameters of the general description.

Thus the present description of an arbitrary secondary automaton has

been made to fit entirely into the parametrization pattern of the
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third scheme of Section 1.4.1.2. Since it is entirely unrestricted, this

means that the universality referred to in question (C) can be

achieved in this way.

1.6 Self-Reproduction—Question (D)

1.6.1.1 The apparent difficulty of using L in the case of self-reproduc-

tion. Let us now consider question (D), that is, the problem of self-

reproduction.

The a priori argument against the possibility of self-reproduction

is that it is natural to expect the constructing automaton to be more

complex than the constructed one—i.e., the primary will be more

complex than the secondary.
25

This is confirmed by the results out-

lined in Sections 1.2.2-1.4.1.1, i.e., those dealing with the first ques-

tion in (B) : the primary must contain a complete plan of the second-

ary (cf. Sec. 1.4.1.1), and in this sense the primary is more complex

than the secondary. This limitation is somewhat transformed, but

not removed, by the subsequent developments of Sections 1.4.1.1-

1.5.2; even the strongest one among the results that are discussed

there (the answer to question (C) in Sec. 1.5.2, securing universality)

is subject to one form of it. Indeed, this result calls for a complete

description of the secondary, expressed by the linear array of cells L,

to be attached to the primary.

If one tried to pass from here directly to self-reproduction, it would

be necessary to have an automaton which can contain its own plan, for

example, in the form L. If the second question of (D) is included,

it would also have to contain the plan (i.e., the L) of another, pre-

scribed automaton.

With the scheme of Section 1.5.2, even the first is impossible: the

(secondary) automaton considered there has no more than af3 cells,

while L (according to formula (*) in Sec. 1.5.2) consists of a/3 + 6

digitalized numbers, afi + 5 commas, and a period (i.e., 2a/3 + 12

or more cells). Many variants on this theme are possible, but none

has yet appeared which, when directly used, overcomes this diffi-

culty. However, there is an indirect method that circumvents it.

1.6.1.2 Circumvention of the difficulty
—the types E and EF . This

method is as follows.
26

Designate the universal (primary) automaton of Section 1.5.2 by

A. A constructs any secondary whose description L is attached to A,

as described in Section 1.5.2.

25 [See also pp. 79-80 above.]
26 Von Neumann, "The General and Logical Theory of Automata." [See

also pp. 84-87 above.]
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It is possible to design and to position at a definite place adjacent

to A another automaton B with the following function. B explores L
and produces an exact copy l/ of it, placing L' in exactly the same

position with respect to the secondary that L is in with respect to

the primary A. The information necessary for this positioning can

be obtained by the investigation of L, since the latter contains the

numbers #1,3/1, a, 0, which describe the position of the secondary

in question with respect to the primary A.

Consider finally an automaton C which controls the two previously

mentioned automata A and B as follows: C first causes A, as primary,

to build the secondary S described by L. C then causes B to make a

copy L' of L and to attach it to the secondary S as described above.

Now designate the total aggregate of all three automata A, B, C by D.

Designate the description L of this automaton D by LD . Note that

LD must contain the numbers X\
,

ij\ (indirectly, by way of e, 77,

|#i|, |?/i|; cf. formula (*) in Sec. 1.5.2), a, j8, which describe the posi-

tioning of the desired secondary with respect to the primary. There

need be no doubt about the values of a, /3 that are to be used here,

since one can ascertain how large a rectangle is needed to cover D.

With respect to x\
, y\ ,

however, there is a real choice; these two

coordinates define the relative position of the desired secondary with

respect to the primary. Let us assume first that this choice will be

made in some definite manner; it need only guarantee that the second-

ary and its attachment L' will lie wholly outside the primary and

its attachment L. Later on we will have somewhat more to say about

this.

Now consider the complex E which results from attaching LD to

D. By going over the description given above, it is easily verified

that E will construct precisely D with LD ,
displaced as above. Thus

E is self-reproducing.

This answers the first question of (D ) . The second question of (D

)

can now also be answered along the same lines. Indeed, assume that

in addition to self-reproduction, the construction of a further autom-

aton F is also wanted. In this case, form the L which describes D
followed by F: LD+F . Now consider the complex EF which results

from attaching LD+F to D. It is clear that this will construct D, at-

tach LD+F to it, and also construct F. In other words, it self-reproduces

and constructs F in addition.

The following remarks serve to clarify somewhat further the nature

of the procedure outlined for (D )

.

1.6.2.1 First remark: shape o/L. The construction of an automaton

was based on generating separately every correct state of every cell
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in a suitable covering area {cf. Sec. 1.5.2 (b), where this modus
procedendi is indicated}. The covering area is conceived in a sim-

plified, and therefore presumably often overextended, form as a

rectangle {cf. Sec. 1.5.2 (a)}. The external attachment L is a linear

array (cf. the last part of Sec. 1.5.2). These two geometrical shapes

will not always fit together perfectly: covering them simultaneously

by a rectangle may force an inelegant overextension of the latter. It

should be pointed out that there is nothing immutable about the

linear shape of L, and that one might well decide to change it (cf.

later). On the other hand, the linear shape has the virtue of easy

overall accessibility (cf. later [Ch. 4]).

1 .6.2.2 Second remark: avoidance of collision in a single reproduction.

As pointed out toward the end of Section 1.6.1.2, xi , yi must be so

large that the secondary (whose position relative to the primary is

defined by the coordinates Xi , yi) and its attachment L' will lie

wholly outside the primary and its attachment L. Hence they are

affected by the size of L. (L,' is congruent to L.) This creates the

danger of a vicious circle, since L contains \yi\.

However, this danger is not serious, and any one of the following

procedures will obviate it.

L (both for the primary L itself and for the secondary L,') extends

in one direction only (the positive x-direction; cf. the end of Sec.

1.5.2), which implies that it is quite thin in the ^/-directions (especially

if it is linear; cf. above and also later). Therefore, a fixed minimum
value for \yi\ can be assigned, which guarantees that neither D nor

L of the primary and of the secondary collide, by virtue of their

separation in the ^/-direction.

Alternatively, a base k notation for |#i|, \yi\ (cf. Sees. 1.4.1.2 and

1.4.2.1 ) guarantees that the area used for their designation, and there-

fore L also, increases only as the
2
log of these numbers (cf. Sec.

1.4.2.4), whereas the separation that they provide is essentially that

of their own size. Clearly for sufficiently large numbers these will

overtake their own 2

log to any desired degree.

Finally, if each number is to be designated, as alternatively sug-

gested in Section 1.4.2.4, by a sequence of as many ones as it expresses,

we can still avoid any difficulty by, for example, agreeing that \xi\,

\yi\ are to be squares of integers and that the numbers to be desig-

nated by the means indicated above will be their square roots. Thus

the required size of L will go with the square root of the separation

provided, which is, like the
2
log, a slowly increasing function, sure

to be adequately overtaken when the numbers get sufficiently large.

As mentioned above, any one of these three devices is workable,
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and they are not the only ones. The actual procedure will be devel-

oped later.

1.6 .2.3 Third remark: analysis of the method for overcoming the

difficulty of Section 1.6.1.1—the role of L. It is worth recapitulating

how the a priori argument against the possibility of self-reproduction,

as stated in Section 1.6.1.1, was overcome in Section 1.6.1.2.

The essential step was that D contained a sub-assembly B which is

able to copy (and re-position) any linear array L. B is a fixed entity,

of fixed, finite size, and it is yet able to copy an L of any size. It is

essentially this step of "copying" which transcends the otherwise

seemingly valid rule of the primary's necessary superiority (in size,

also in organization) over the secondary.

Now L = LG is the description of the secondary G that is to be

constructed, as discussed in Section 1.5.2. (In our actual applications

in Sec. 1.6.1.2, D and D + F played the role of G.) One might ask

why the description LG is preferable to the original G in controlling

the copying device B. In other words, why can B not copy directly

G itself, i.e., why must the intermediary LG be introduced? This

question is clearly of considerable semantic importance for the area

in which we are now working, i.e., for a theory of automata. Indeed,

it touches at the base of the entire question of notations and represen-

tations, i.e., of the significance and advantages of introducing "de-

scriptions" in addition to the original objects.

The reason is this. In order to copy a group of cells according to

the ideas of Section 1.6.1.2 concerning B, it is necessary to "explore"

that group to ascertain the state of each one of its cells and to induce

the same state in the corresponding cell in the area where the copy

is to be placed. This exploration implies, of course, affecting each cell

of this group successively with suitable stimuli and observing the

reactions. This is clearly the way in which the copying automaton B
can be expected to operate, i.e., to take the appropriate actions on

the basis of what is found in each case. If the object under observa-

tion consists of "quasi-quiescent" cells (cf. the remarks made on this

subject in Sec. 1.4.2.1), then these stimulations can be so arranged

as to produce the reactions that B needs for its diagnostic purposes,

but no reactions that will affect other parts of the area which has to

be explored. If an assembly G, which may itself be an active

automaton, were to be investigated by such methods, one would have

to expect trouble. The stimulations conveyed to it, as discussed above,

for "diagnostic" purposes, might actually stimulate various parts of

G in such a manner that other regions could also get involved, i.e.,

have the states of their cells altered. Thus G would be disturbed;
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it could change in ways that are difficult to foresee, and, in any case,

likely to be incompatible with the purpose of observation; indeed,

observing and copying presuppose an unchanging original. The
virtue of LG (as compared to G) is that, since it consists of quasi-

quiescent cells, no such complications (i.e., no spreading of the diag-

nostic stimulations) need be expected. (For the details of all this,

cf. later [Ch. 4].)

The above requires one more qualification. Our choice actually did

not lie between the copying of G and the copying of LG . It was rather

the copying of G on the one hand, and the copying of LG ,
combined

with the construction of G from its description LG ,
on the other

hand. The last step in the second procedure, however, is feasible,

since this is precisely what the universal constructing automaton in

the sense of question (C) will do, according to Section 1.5.2. Note

also that the quasi-quiescent character of L = LG is important in

this construction step too; in fact, the observations of Section 1.4.2.1

concerning quasi-quiescence in L were aimed directly at this applica-

tion.

1.6.3.1 Copying: use of descriptions vs. originals. It is worthwhile

to observe at this point, too, why a third step, namely the construc-

tion of LG , based on a direct exploration of the original G, cannot be

carried out with these methods. Note that if this could be done, then a

suitable primary automaton could copy a given automaton G with-

out ever having been furnished with its description LG . Indeed, one

would begin with the step mentioned above, the construction of LG
from G, and then proceed with the two steps mentioned previously,

the copying of LG and the construction of G from LG . The difficulty

is that the two last mentioned steps require only the observation of

the quasi-quiescent LG ,
while the first mentioned step would also

call for the observation of the uncontrollably reactive G. If one

considers the existing studies concerning the relationship of automata

and logics, it appears very likely that any procedure for the direct

copying of a given automaton G, without the possession of a descrip-

tion LG , will fail; otherwise one would probably get involved in

logical antinomies of the Richard type.
27

To sum up, the reason to operate with "descriptions" LG instead of

the "originals" G is that the former are quasi-quiescent (i.e., un-

changing, not in an absolute sense, but for the purposes of the ex-

ploration that has to be undertaken), while the latter are live and

reactive. In the situation in which we are finding ourselves here, the

27 [Von Neumann indicated that he was going to make a footnote reference

to Turing at this point. See Sec. 1.6.3.2 below.]
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importance of descriptions is that they replace the varying and reac-

tive originals by quiescent and (temporarily) unchanging semantic

equivalents and thus permit copying. Copying, as we have seen

above, is the decisive step which renders self-reproduction (or, more

generally, reproduction without degeneration in size or level of

organization) possible.

[ 1 .6.3.2 The Richard paradox and Turing machines. As indicated

above, von Neumann was going to make a footnote reference to

Turing in connection with the Richard paradox. I do not know what

he had in mind, but I think it likely that he was going to mention

the parallelism between Richard 's paradox
28

and Turing's proof of

the undecidability of the halting problem. In any case, this paral-

lelism is illuminating in the present context.

Richard's paradox may be generated in a suitable language <£ as

follows. Let 6o,6i,62 ,
• • • be an enumeration of all the expressions of

£ which define two-valued number-theoretic functions of one varia-

ble, that is, functions from the natural numbers to the two values

zero and one. The expression "x is odd" is such an expression; it

defines a function which is true (has the value 1 ) for odd numbers

and is false (has the value 0) for even numbers. Let fi(n) be the

number-theoretic function denned by ,
and define —fi(n) by

-/<(n) = 0if/<(n) = 1

-fdn) = 1 if/«(n) = 0.

Finally, let e be the expression "the function —fn (n)."

We assume that e is expressible in «£, and derive a contradiction.

(1) The enumeration e0 , &i , ,
• • • contains all the expressions of £

which define two-valued number-theoretic functions of one variable.

Expression e clearly defines a two-valued number-theoretic function

of one variable. Therefore expression e is in the enumeration e0 ,

ei ,
e2 ,

• • •
. (2) But e is an explicit definition of the function —fn (n),

which differs from every function in the enumeration fo(n), fi(n),

/2 (n), • • • . Therefore e does not define any of the functions /o(w),

fi(n), • • •
. For each i, fi(n) is defined by . Consequently,

e is not in the enumeration e0 , #i , 62 ,
• • • .

Thus we have shown both that the expression e is in the enumera-

tion 60 , 61 , 62 , • • • and that it is not in this enumeration. The appear-

ance of this contradiction is surprising, because it would seem that

expression e is a legitimate expression in a consistent language,

namely, the English language enriched with some mathematical

28 [Richard, "Les principes des mathematiques et le probleme des ensem-
bles. " See also Kleene, Introduction to Metamathematics

, pp. 38, 341.]



124 THEORY OF SELF-REPRODUCING AUTOMATA

symbols. Actually, the contradiction shows that if a language £ is

consistent then e cannot be expressed in it.

Let us turn next to the halting problem for Turing machines. This

problem was explained at the end of the Second Lecture of Part I

above. A Turing machine is a finite automaton with an indefinitely

extendible tape. A "concrete Turing machine ,,
is a Turing machine

which has a finite "program" or problem statement on its tape ini-

tially. A concrete Turing machine is said to be "circular" if it prints

a finite sequence of binary digits and halts, while it is said to be

"circle-free" if it continues to print binary digits in alternate squares

forever. Turing proved that there is no decision machine for halting,

that is, no abstract Turing machine which can decide whether an

arbitrary concrete Turing machine is circular (will halt sometime)

or circle-free.

Turing's proof that there is no decision machine for halting may
be put in a form which closely parallels the preceding proof concern-

ing Richard's paradox. Let fa , fa , fa , • • *
, U , • • • be an enumeration

of all the circle-free concrete Turing machines. Let s*(0), s»(l),

Si (2), •••
,

Si(n), ••• be the sequence computed by machine fa .

Each Si(n) is either zero or one, so machine fa computes the two-

valued function s t-(n) in the sense of enumerating its values in their

natural order. Now consider the function — sn (n). This function is

analogous to the function —fn (n) defined by expression e in the

Richard paradox.

To continue the parallelism, we assume that there is a circle-free

concrete Turing machine t' which computes the function — sn (n)

and derive a contradiction. (1) The enumeration to , fa , fa ,
• • • con-

tains all circle-free concrete Turing machines. Machine t' is by hy-

pothesis a circle-free concrete Turing machine. Consequently, machine

t' is in the enumeration to , fa , fa ,
• • •

. (2) By definition, { computes

the function —sn (n), which clearly differs from every function in

the enumeration So(ft), Si(ft), s2 (n), •••
. For each i, the function

s» (n) is computed by the machine fa . Consequently, machine t' is

not in the enumeration fa , fa , fa ,
* • • .

Thus we have shown both that machine { is in the enumeration

U , t\ , fa
' '

' and that it is not. The appearance of this contradiction

is not surprising, however, for we had no reason to believe that

machine t' exists. In other words, the contradiction shows that ma-

chine { does not exist, and hence that the function — s„(ft) is not

computed by any circle-free concrete Turing machine.

We assume next that there is a decision machine t

h
for halting, and

derive a contradiction. There is a concrete Turing machine which
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can enumerate all the concrete Turing machines; call it t\ The output

of t
e

can be fed into t

h
to produce a machine t

e + t
h
which enumerates

all the circle-free concrete Turing machines. There is an abstract

Turing machine t
u

which can simulate each circle-free concrete

machine in turn, find sn (n) for each machine n, and print — sn (n).

Thus the machine f + t

h + t

u
computes the function — sn (n), and

is the machine t . But we know from the preceding paragraph that

machine t' does not exist. Machines f and t

u
do exist. Therefore,

machine t
h
does not exist. That is, there is no decision machine for

halting. It follows also that machine f + t

h
does not exist, i.e., there

is no machine which enumerates all the circle-free concrete Turing

machines.

The first part of the preceding proof that there is no decision ma-
chine for halting establishes both that machine { is in the enumeration

to , h , h ,
* * * and that it is not. This closely parallels the earlier

proof, given in connection with Richard's paradox, that the expres-

sion e is in the enumeration e0 , #i ,
e2 ,

• • • and that it is not. Both

use Cantor's diagonal procedure to define a function which is not

in a given enumeration. I suspect that it was because of this paral-

lelism that von Neumann was going to refer to Turing at this point.

It should be noted that the Richard paradox can be barred from a

language by imposing a "theory of types" on that language.
29

For

example, we can design the language so that every expression of the

language has a type number, and so that an expression of given type

can refer only to expressions of lower type. Suppose now that the

expressions e0 , #i ,
e2 ,

• • • are of type m. Since expression e refers

to all these expressions, it must be of higher type, and therefore

cannot be in the list e0 ,
e\

,
e2 ,

* • • . This being so, our earlier deriva-

tion of Richard's paradox fails. See in this connection the letter

from Kurt Godel quoted at the end of the Second Lecture of Part I

above.

These considerations about self-reference are relevant to the prob-

lem of designing a self-reproducing automaton, since such an autom-

aton must be able to obtain a description of itself. In Section 1.6.3.1

(entitled "Copying: use of descriptions vs. originals") von Neumann
considers two methods for accomplishing this, which I will call the

"passive" and "active" methods. In the passive method the self-

reproducing automaton contains within itself a passive description

of itself and reads this description in such a way that the description

29 [Russell,
' 'Mathematical Logic as Based on the Theory of Types." See

also Kleene, Introduction to Metamathematics
, pp. 44-46.]
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cannot interfere with the automaton's operations. In the active

method the self-reproducing automaton examines itself and thereby

constructs a description of itself. Von Neumann suggests that this

second method would probably lead to paradoxes of the Richard

type, and for this reason he adopts the first method. See also Sections

1.7.2.1, 2.3.3, 2.6.1, and 2.8.2 below. We will see by the end of Chapter

5 below that a self-reproducing machine can indeed be constructed

by means of the first method. This shows that it is possible for an

automaton to contain a description of itself.]
30

1.7 Various Problems of External Construction Intermediate

Between Questions (D) and (E)

1.7.1 Positioning of primary, secondary, ternary, etc. We pass now
to an extension of question (D) which points the way towards

question (E). This deals with the question of positioning the second-

ary that the self-reproducing primary E or EF constructs, and the

initiation, timing, and repetitions of the act of self-reproduction.

Note that the positioning of F for EF need not create any new prob-

lems: EF is D with LD+F attached (cf. the end of Sec. 1.6.1.2) and

LD+F is a description of D followed by a description of F. In this

joint description of D with F the latter must be unambiguously posi-

tioned with respect to the former, and this takes care of what is

needed in this respect.

Returning to the main question of positioning the secondary by E
or EF , we can argue as follows. Assume that this positioning is done

by the first method of Section 1.6.2.2, i.e., by choosing a y such that

I Vi | ^ y guarantees the separateness of the primary and the second-

ary E or EF . (In the case of EF we think of both primary and second-

ary as provided with an F positioned according to LD+F relatively

to D; cf. above, although at the beginning of the process only the

secondary need be accompanied by such an F.) Let the origin of the

x, ^/-coordinate system referred to in Section 1.5.2 lie in the

extreme lower left corner of the rectangle covering the primary,

i.e., at the point that corresponds to the one designated by Xi , yi

in the secondary. Thus the secondary is translated by x x , yi against

the primary.

Since the secondary is otherwise identical with the primary (except

for the addition of F in the second case), it will again reproduce (and

produce another F in the second case), constructing a ternary. This

30 [There is an interesting parallel between Godel's undecidable formula
(see p. 55 above), which refers to itself, and von Neumann's self-reproducing

automaton, which contains a description of itself. See Burks, "Computation,
Behavior, and Structure in Fixed and Growing Automata/' pp. 19-21.]
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will then produce a quaternary, followed by a quinary (each with

its concomitant F in the second case; cf. above), etc. The shifts

involved will be 2xi
, 2yi , then Sxi , Syi , then 4xi , 4?/i , etc.

Thus the shift between the p-ary and the g-ary is (q — p)x\
,

(q — p)yi . Since p, q = 1,2, • • •
, therefore p 9^ q implies

|
q - p |

= 1, 2, •
,

and hence
|
(q — p)y x \

=
\
q — p \

•
1
yi | ^ y. Hence, in view of our

above observation relating to Section 1.5.2, these two will not

intersect. That is, all the successively constructed descendants of

the primary will be distinct and non-interfering entities in space.

(To be more precise, these descendants will be distinct and non-

interfering entities in the underlying crystal [crystalline structure].)

Actually, this program of mutual avoidance among the primary and

its descendants must be extended to the paths within the crystal

through which each one of these entities, acting as a primary for

its own reproduction, connects with the site and operates on the

construction of its immediate successor in the line of descent, i.e.,

its secondary.

This, however, presents no difficulties, and will be gone into in

the course of the detailed discussion.

1.7.2.1 Constructed automata: initial state and starting stimulus.

The next point to be gone into is that of initiation and timing.

Consider the state of the secondary automaton which the con-

struction is designed to achieve, i.e., its so-called initial state {cf.

Sec. 1.5.2 immediately after formula (*)}. In all states that lead up

to this, and therefore conveniently in this state too, the automaton

must be quasi-quiescent. This is clearly necessary for an orderly

process of construction, since the already-constructed parts of the

not yet completed secondary must not be reactive and changing,

while the construction—in adjacent as well as in other areas—is

still in progress.

The problem that is encountered here is not unlike the one dis-

cussed in Section 1.6.2.3 relative to the quasi-quiescence of L. How-
ever, it is less severe here. The stimuli that have to be used in ex-

ploring L must be able to induce responses in the primary, if they

are to perform their function of inducing there appropriate actions

that depend on the information acquired in inspecting L. (This is

quite essential to the proper functioning of the primary, as was seen

in the discussion of the operation of constructing under the control

of instructions in Sec. 1.4.2.1, and again in the discussion of the

operation of copying in Sec. 1.6.2.3 and in Sec. 1.6.3.) On the other
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hand, the stimuli that create the desired cell states during the con-

struction of the secondary need not have such effects on the class

of automata that is involved here, secondary or primary. This will be

verified in detail later. Thus it was necessary to keep the "descrip-

tions" L of automata sharply apart from the "originals" (cf. Sec.

1.6.3.1), while it will be possible to construct the automata which are

relevant here so that they have quasi-quiescent initial states. For the

details and precise definitions, cf. later.

The crux of this matter is, of course, that once such a (secondary)

automaton is completed, and hence present in its quasi-quiescent

initial state, it can then be transferred by some appropriate process

of stimulation into its normal (i.e., intended) mode of activity.

This process of stimulation is most conveniently thought of as a

single stimulus, delivered to the appropriate point of the secondary,

at the appropriate time after completion, by the primary. This is

the secondary's starting stimulus. This is, then, the concluding step

of the primary in its construction of the secondary. For the details,

cf. later.

In the case of self-reproduction, i.e., for the E or EF discussed

in Sections 1.6.1.2 and 1.7.1, the secondary (or one of the secondaries)

is a shifted copy of the primary. The starting stimulus activates this

secondary and makes it self-reproducing (as the primary had been

originally). This, then, maintains the iterative process of self-re-

production with which Section 1.7.1 dealt.

1.7.2.2 Single-action vs. sequential self-reproduction. For the self-

reproducing primary (E or EF ; cf. above) the next question is this:

What does the primary do after it has completed the secondary

and given it the starting stimulus?

The simplest arrangement would be to let it return to a quasi-

quiescent state which is identical with its original state. Implicitly

this is the assumption which fits discussions like the one of continued

reproduction in Section 1.7.1.

An alternative possibility is to finish with the quasi-quiescent

state, plus activity in a suitable terminal organ which imparts the

starting stimulus again. This scheme leads to repeated self-reproduc-

tions by the original primary, and of course similarly by all its

descendants in the first, second, third, etc. degree. However, it is

not operable without one more elaboration.

Indeed, as it stands it would cause the primary to try to form all

successive secondaries with the same Xi ,
iji ,

i.e., at the same location

in the crystal. This is obviously conflicting; at best the second con-

struction of a secondary would override and destroy the first speci-
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men. However, it is even more likely that the first secondary, which

by then is reactive, will interfere with the second (attempted)

construction, causing an unforeseeable class of malfunctions and

corrupting all reproduction. It is therefore necessary to change

Xi , 2/1 between the first and the second attempt to construct a second-

ary, and similarly between the second and the third one, the third

and the fourth one, etc., etc. This changing of X\
, yi must therefore

take place during (i.e., as a part of) the activity of the terminal

organ referred to above. The arithmetical rules that control these

successive modifications of x\
, yi must be such that the whole se-

quence of secondaries of the original primary do not conflict with

each other, nor with the possible F which accompany them (cf.

the first part of Sec. 1.7.1), nor with the paths which are required

for their construction (cf. the end of Sec. 1.7.1). In addition, every

secondary of the original primary, since it is a shifted copy of the

latter, will behave in the same way. Thus a double sequence of

ternaries will be constructed from these, then by the same mechanisms

a triple sequence of quaternaries, then a quadruple sequence of

quinaries, etc., etc. The rules for the successive modifications of the

Xi , y\ must hence be such that no two in all the orders of this hier-

archy ever interfere with each other, or with each other's possible F,

or with each other's construction paths.

This requirement sounds complicated, but it is not particularly

difficult to implement by suitable arithmetical rules concerning the

formation of the successive X\ , yi . This will be discussed later.

The above discussion thus distinguishes between two types of self-

reproduction : first, when each primary constructs only one second-

ary, and second, when each primary keeps constructing secondaries

sequentially without ever stopping. We will designate these as the

single-action and the sequential type of self-reproduction, respectively.

1.7.3 Construction, position, conflict. Some remarks about physio-

logical analogs of the above constructions are now in order.

Comparing these processes of construction and reproduction of

automata, and those of actual growth and reproduction in nature,

this difference is conspicuous; in our case the site plays a more criti-

cal role than it does in reality. The reason is that by passing from

continuous, Euclidean space to a discrete crystal, we have purposely

bypassed as much as possible of kinematics. Hence the moving

around of a structure which remains congruent to itself, but changes

its position with respect to the crystal lattice, is no longer the simple

and elementary operation it is in nature. In our case, it would be

about as complex as genuine reproduction. This means that all
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of our structures are rather rigidly tied to their original location, and

all conflicts and collisions between them are primarily conflicts in

location.

It is true in the natural setting, too, that conflicts and collisions

are due in the same way to location, but there the scheme has more

elasticity because of the possibility of motion. The limitations of the

pattern due to this circumstance are obviously the price one has to

pay for the simplicity obtained by our elimination of kinematics (cf

.

the discussions of Sees. 1.3.1.1-1.3.3.1).

An essential preliminary condition for the mechanisms of repro-

duction that we have considered is the quiescence of the area in

which they are to function (cf., e.g., the remarks in the first part of

Sec. 1.7.2.1 and in the first part of Sec. 1.7.2.2). That is, the region

of the crystal surrounding the primary must be free of all reactive

organisms, and this must be true as far as the process of reproduction

is expected to progress unhindered. It is quite clear that where the

reproductive expansion of the area under the influence of the primary

collides with other reactive organisms, the "unforeseeable malfunc-

tions" referred to in Section 1.7.2.2 can set in. This is, of course,

just another way to refer to the conflict situations involving several

independent organisms that have come into contact and interaction.

1.7.4.1 EF and the gene-function. Another physiological analog

worth pointing out is the similarity of the behavior of automata of

the EF type with the typical gene function.
31

Indeed, EF reproduces

itself and also produces a prescribed F. The gene reproduces itself

and also produces—or stimulates the production of—certain specific

enzymes.

1.1
' .1+.2 EF and the mutation—types of mutation. A further property

of EF that may be commented on is this. Assume that a cell of EF

is arbitrarily changed. If this cell lies in the D-region of EF , it may
inhibit or completely misdirect the process of reproduction. If, on

the other hand, it lies in the LD+F region of EF ,
then EF will construct

a secondary, but this may not be related to it (and to F) in the de-

sired manner. If, finally, the altered cell lies in the LD+F region, and

more particularly in the description of F within it, modifying F into,

say F', then the production of EF > will take place, and in addition

to it an F' will be produced.

Such a change of a cell within EF is rather reminiscent of a mutation

in nature. The first case would seem to have the essential traits of a

lethal or sterilizing mutation. The second corresponds to one without

31 Von Neumann, "The General and Logical Theory of Automata." Col-

lected Works 5.317-318.
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these traits, but producing an essentially modified, presumably

sterile, successor. The third one produces a successor which is viable

and self-reproducing like the original but has a different by-product

(F instead of F). This means a change of the hereditary strain.

Thus the main classification of mutations turns out to be quite

close to the one occurring in nature.

] .8 Evolution—Question (E)

The observations of Section 1.7 tend towards the transition from

question (D) to question (E). On (E), itself, the question of evolu-

tion, we will only make a few remarks at this point.

There is no difficulty in incorporating logical devices into automata

of the types E or EF which will modify the D, F areas in their LD ,

LD+F ,
respectively, depending on outside stimuli which they may

have received previously. This would amount to a modification of the

mass of heredity that they represent by the occurrences (experiences)

of their active existence. It is clear that this is a step in the right di-

rection, but it is also clear that it requires very considerable additional

analyses and elaborations to become really relevant. We will make a

few remarks on this subject later.

In addition to this it must be remembered that conflicts between

independent organisms lead to consequences which, according to the

theory of "natural selection," are believed to furnish an important

mechanism of evolution. As was seen at the end of Section 1.7.3,

our models lead to such conflict situations. Hence this motive for

evolution might also be considered within the framework of these

models. The conditions under which it can be effective here may be

quite complicated ones, but they deserve study.



Chapter 2

A SYSTEM OF 29 STATES WITH A GENERAL
TRANSITION RULE

2.1 Introduction

2.1.1 The model: states and the transition rule. In this chapter we
will develop the first model that possesses the potentialities of logical

and constructive universality and of self-reproduction (cf. questions

(A)-(E) in Sec. 1.1.2.1), as well as the other attributes evolved in

the course of the discussion of these in Chapter 1. This model is

based on a crystalline medium (cf. Sees. 1.3.3.1-1.3.3.3); we will be

able to construct it in two dimensions and to use there the quadratic
1

(regular) lattice {cf. the end of Sec. 1.3.3.3, in particular questions

(P) and (R)}. Each lattice point of this crystal will be able to assume

a finite number of different states (say N states) and its behavior

will be described (or controlled) by an unambiguous transition rule,

covering all transitions between these states, as affected by the states

of the immediate neighbors.

We will, then, perform the major constructions called for by ques-

tions (A)-(E) in Section 1.1.2.1 (and the relevant subsequent

discussions of Ch. 1) for a specific model defined along these lines.

2.1.2 Formalization of the spatial and the temporal relations. At this

point we introduce some rigorous concepts and notations.

The lattice points of the quadratic crystal (cf. Sec. 2.1.1) are

designated by two integer-valued coordinates, i, j. It is natural to

treat the crystal as unlimited in all directions, at least as long as there

does not emerge some definite reason for proceeding differently. This

determines the ranges of i, j:

(1) i,j = 0, ±1, ±2, ...
.

[It does not matter which lattice point is selected as the origin

(0, 0).] The pair i,j thus represents a point in the plane, but it is also

convenient to view it as a vector, i.e., to treat it as an additive quan-

1 [The lattice points of a quadratic crystal lie at the corners of squares.]

132
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tity. We write

(2) -

The nearest neighbors of (i,j) are the four points (i =b l,j)> (hj ± 1).

The next neighbors are the four points (i db 1 , j ± 1 ) . In Figures 4a

and 4c the nearest neighbors of X are marked with small circles

(O), and the next nearest neighbors are marked with heavy dots

(•).
Put

(3)

and

(4)

= (1,0), v' = (0, 1),

= -v° = (-1,0), v> = -v1 = (0, -1),

v
e = —v* = (— 1, —1), v = —v = (1, — 1).

See Figure 4b. The nearest neighbors of & are the # + v
a

(a = 0, • • •
,

3), and the next neighbors of # are the # + v
a

(a = 4, • • •
, 7).

One might hesitate as to whether the immediate neighbors of # re-

ferred to in Section 2.1.1 should be, among the $ + v
a

, the four with

a = 0, • • •
, 3 or the eight with a = 0, • • •

, 7. We will choose the

former, since it leads to a simpler set of tools.

In Figures 4a and 4b the crystal lattice was shown in the usual

manner, the lattice points being the intersections of the lines. In

future figures we will use a different scheme: the lattice points will

be shown as squares, and immediate neighbors (which in Figs. 4a and

4b were connected by single edges) will now be squares in contact

(i.e., with a common edge). Furthermore, we will always show only

those squares (i.e., only those lattice points) which are needed to

illustrate the point immediately at hand. Thus Figure 4a assumes

the appearance of Figure 4c.

As discussed in Section 1.2.1, the range of time t is

(5) t = 0, d=l, ±2, ...
.

Each lattice point is a cell in the sense of Sections 1.3.3.1 and

1.4.1.1. It is able to assume N states (cf. Sec. 2.1.1); let these be

designated by an index

(6) n = 0, 1, •••
, N - 1.

The state of cell & = (£, j) at time t will therefore be written

(7) n,'.
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Also, the N numerals 0, 1, • • •
, N — 1 used in expression (6) to

designate n may be replaced by any other N symbols, according to

convenience.

The system is to be intrinsically homogeneous in the sense of

Section 1.3.3.2; i.e., the same rule will govern its behavior at each

lattice point This rule is the transition rule referred to in Section

2.1.1, which defines the state of the cell # at time t in terms of its

own state and of the states of its immediate neighbors at suitable

previous times. We will limit and simplify our system by restricting

these "suitable previous times" to precisely the immediate prede-

cessor of t, i.e., t — 1. Thus n& will be a function of n#~ l

and of the

nf+ va (a = 0, • • •

, 3). That is,

(8) n# = F(n#
M

.; 4+x

,« |
a = 0, • • •

, 3).

Let m take the place of n# and let m a
take the place of n#+va . The

function F then becomes F(m; m a
\ a = 0, 1, 2, 3). This TV-valued

function F of five Af-valued variables represents, therefore, the transi-

tion rule. It is the sole and complete rule that governs the behavior

of this (intrinsically homogeneous) system.

Note that the range of F has N elements, while the domain of F
(the set of all quintuplets) has Nb

elements. Hence there are

(9) jV
("6>

possible functions F, i.e., this many possible transition rules, or

models of the class under consideration.

2.1.3 Need for a pre-formalistic discussion of the states. Let us now
discuss in a more heuristic way what the N states of a cell should be.

The nature of these states is, of course, described not by their enumer-

ation (6), but by the transition rule (8). The only relevant informa-

tion contained in (6 ) is the number of states, N. In accord with this,

the rigorous summation of these considerations will consist of a

specification of the transition rule (8), i.e., of the function F. In the

present, heuristic stage, however, it will be better to proceed with an

enumeration (6), attaching to each n of (6) a name and a verbal

description of the role that it is intended to play. In this connection

we will also make use of the possibility of notational changes, referred

to in the remark after (6) and (7) in Section 2.1.2.

2.2 Logical Functions—Ordinary Transmission States

2.2.1 Logical-neuronal functions. To begin with, states are needed

to express the properly logical or neuronal functions, as discussed in

Section 1.2.1. This calls for the equivalents of the neurons of Figure

3 and of their connecting lines.
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2.2.2.1 Transmission states—connecting lines. We consider first

the connecting lines. These must now be rows of cells, i.e., of lattice

points. Since a line must be able to pass a (neural) stimulus, each one

of its cells must possess, for this purpose alone, a quiescent and an

excited state. The purpose that we consider here is to transmit a

(neural) stimulus. We call these therefore the transmission states

of the cell and designate them by the symbol T. We use an index

e = 0, 1; i.e., we write T t to indicate quiescence and excitation. Let

e = 0 designate the former and e = 1 the latter.

This transmission must be a directed process, since the lines (that

the cells in transmission states replace) were directed to connect

definite points. Hence we must set up certain limitations. We may
stipulate that a cell in a transmission state accepts a stimulus only

from one, definite direction, its input direction. That is, an excited

transmission cell brings an immediate neighbor (which is a quiescent

transmission cell) into the excited transmission state (or, if the latter

is found in that state, it keeps it there) only if the former lies in the

latter's input direction. Alternatively, we may also stipulate that a

cell in a transmission state emits a stimulus only in one, definite

direction, its output direction. That is, an excited transmission cell

brings an immediate neighbor (which is a quiescent transmission

cell) into the excited transmission state (or, if the latter is found in

that state, it keeps it there) only if the latter lies in the former's

output direction. Finally, we may make both stipulations together.

After trying various models along these lines, it appeared most

convenient to stipulate a definite output direction. In order to avoid

certain uncontrolled, and hence undesirable, return-stimulation

phenomena, it seems desirable, while not prescribing any particular

input direction, to specify that the output direction is insensitive to

inputs.

The v
a
(a = 0, • • •

, 3) of Figure 4b enumerate all possible direc-

tions for an immediate neighbor (cf. the remarks after expressions

(3) and (4) in Sec. 2.1.2). Hence the T e will be given a further index

a = 0, • • •
, 3: T ac , so that T a e has the output direction v

a
. The

above stipulations now assume this form: Ta >i at induces T«i at

* (from T a0 or T«i) if and only if & = &' + v
a
\ but + v

a
,

i.e., if and only if # — &' = v
a ^ — v

a
.

Let us now use the symbols T ae (a = 0, • • •

, 3; e = 0, 1) in place

of some eight number values in expression (6) (cf. the remark after

expression (6) and (7) in Sec. 2.1.2). Let us also recognize the unit

time delay of the stimulus-response process, as discussed in Section

2.1.2. Then the above rule becomes:
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I Then n* = T al if n#7* = TV,
for some with § — §' = v

a ^ —v a
.

Otherwise n& = T a0 .

Assume n&
1 = T«,

(10)

2.2.2.2 Delays, corners, and turns in connecting lines. Note that

this model for the connecting lines differs from the one considered in

Section 1.2.1 in that it introduces finite propagation delays. We have

now a unit time delay between immediate neighbors. However, this

deviation from the pattern of Section 1.2.1 will have no relevant

undesirable consequences.

Note also that this model serves equally to synthesize straight

connecting lines from transmission cells, and connecting lines with

corners or turns in them. Straight lines are shown in Figures 5a-5d;

these represent the four possible "straight" directions in our lattice.

"Corners" and "turns" are shown in Figures 5e and 5f. Figures

5a-5f are drawn according to the rules stated in Figure 4c. Figures

5a'-5f' are simplified (and more easily readable) versions of Figures

5a-5f, respectively, in which each T a€ is replaced by the arrow of its

v
a

(cf. Fig. 4b).

We consider next the specific neurons of Figure 3.

2.3.1 The + neuron. The + neuron merely calls for an excitable

cell which has an output and two possible inputs. There is, of course,

no harm done if it can accommodate more than two such inputs. We
defined a transmission cell in Section 2.2.2.1 so that it has three

possible inputs. Every one of its four sides, excepting the output side,

is an input. Thus our transmission cells not only fulfill the function

of (elements of) connecting lines between neurons (this being the

function for which they were originally intended), but also fill the

role of + neurons.

The use of an ordinary transmission cell as a + neuron, i.e., as a

connecting line junction, is shown in Figure 5g. This figure is drawn

according to the scheme of Figures 5a'-5f'.

2.3.2 Confluent states: the • neuron. The • neuron calls for an excita-

ble cell that has an output and two inputs, which must be stimulated

together in order to produce excitation. It would be quite practical

to introduce a class of such states. However, a free choice of an output

direction and two input directions (from the totality of four possible

directions, as represented by the v
a

, a = 0, • • •
, 3), would require

(4 X 3 X 2)/2 = 12 kinds, and, since there must be a quiescent and

an excited state for each kind, a total of 24 states. It is possible to

2.3 Neurons—Confluent States
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achieve equally satisfactory results with more economy, namely

with only one kind, and hence with two states. This can be done by

prescribing no particular input or output directions at all, i.e., by

stipulating that every direction is a possible input, as well as a possible

output. In addition to this, one can then prescribe as the prerequisite

of excitation a minimum of two stimulations, i.e., a minimum of two

excited transmission cells that are immediate neighbors and in whose

output direction our cell lies. However, it is still more convenient to

frame this condition more elastically and to stipulate that the cell

under consideration gets excited if every immediately neighboring

transmission cell, whose output direction points at this cell, is itself

excited. (This is to be taken with the exclusion of the subcase—which

is strictly logically admissible, but obviously conflicting with the

intention—that none of the immediate neighbors qualifies, i.e., is a

transmission cell and has its output direction pointing at this cell.)

This formulation of the rule has the effect that the cell under con-

sideration can act as a neuron of threshold one (i.e., from the point

of view of inputs, like an ordinary transmission cell), or two (i.e.,

like the desired • neuron), or three (i.e., like a combination of two •

neurons), depending on whether one, two, or three, respectively, of its

immediate neighbors are transmission cells with their output direc-

tions pointing at it. (Since this cell should not be able to stimulate

any transmission cell whose output direction is pointing at it—cf.

rule (10) and its adaptation to the present situation in rule (12)

below—it would be pointless to have all of its four immediate neigh-

bors in such a state. This situation would preclude any results of an

excitation of our cell.)

We will call these states of a cell confluent states, and designate

them by the symbol C. We again use the index e = 0, 1; that is, we
write C € to indicate quiescence (e = 0) and excitation (e = 1). We
proceed now similarly as we did at the end of Section 2.2.2.1. We
use the symbols C e (e = 0, 1) in place of two number values in ex-

pression (6) (cf. the remark after expressions (6) and (7) in Sec.

2.1.2). The rule that we formulated above now becomes, inasmuch

as it affects the inputs to C:

Assume n&~ 1 = C € .

(11)

Then n* =d , if both (a), (b) hold:

(a) nlv
1 = T«'i for some #' with # - / = v

a '

.

(b) Never n#~
l = T^ 0 for an with & - #' = v

a '

.

Otherwise n/ = C0 .

The portion of the rule that affects the outputs of C must be stated
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as a modification of rule (10), since it provides for a new way to

excite a transmission cell, i.e., to produce a T«i from a T ac . This is

expressed by the following insertion between the second and third

sentences of rule (10):

s

19
v (Also n# = T«i if n^T

1 = Ci for some
{ Z)

\with 0 - y = / ^ -if 08 = 0, • • •
, 3).

Note that the system of rules (10), (11), and (12) provides for

excitation of T by T, also of C by T, and T by C, but not for an excita-

tion of C by C. This arrangement will have no relevant undesirable

consequences.

A • neuron with its close surroundings is shown in Figure 6a. This

figure is drawn according to the scheme of Figures 5a'-5f' and 5g.

The confluent state C here makes its first appearance.

2.3.S The — neuron. The — neuron calls for an excitable cell in

which the roles of quiescence and excitation are interchanged in

comparison with the transmission states. It must be ordinarily excited

(i.e., able to excite an immediately neighboring cell in a transmission

state, at which its output direction points), but it must be made
quiescent by an input stimulation (reverting to excitation when the

stimulation ceases). We could introduce a class of such states—e.g.,

with a given output direction, all other directions being input direc-

tions, just as in the transmission states. Since there are four possible

directions, this would require four kinds, and with quiescence and

excitation for each kind, eight states would be needed. However, we
are reluctant to introduce a class of such states whose ordinary,

unperturbed condition is not quiescence. This objection could be

circumvented in various ways, with higher or lower degrees of econ-

omy.
2 We shall find that a class of states which we will introduce

later for other reasons can be used to synthesize the function of

the — neuron. We can therefore forego altogether taking care of it

at this stage.

2.34 The split. Although all the neuron species of Figure 3, as

2 [Von Neumann here referred to the double line trick of his "Probabilistic

Logics and the Synthesis of Reliable Organisms from Unreliable Components,"
Collected Works 5.337. Using only -f neurons and • neurons, he synthesized a

complete set of truth-functional primitives by using a pair of lines with the

codings 01 (for "zero") and 10 (for "one"). In other words, each line of the

pair is in the opposite state from the other line of the pair, so that negation may
be realized by interchanging (crossing) the two lines of a pair. But in the pres-

ent manuscript von Neumann synthesized negation from the destructive (re-

verse) and constructive (direct) processes of Sees. 2.5 and 2.6 below. An exam-
ple of this synthesis is given in Fig. 17 of Sec. 3.2 below.]
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well as their connecting lines, have been disposed of, there remains

one more entity in this category to consider. Logical (i.e., neuronal)

networks in the sense of Section 1.2.1 must in most cases contain

connecting lines that lead from one output to several inputs, i.e.,

output lines that have to be split. (This was mentioned in Sec. 1.2.1.)
3

That is, transmission-like states with several outputs are needed.

However, it suffices to note that our definition of the confluent

states takes care of this need. (Cf. Sec. 2.3.2, in particular the discus-

sion of the "threshold 1" geometry for this class of states, near the

end of Sec. 2.3.2. In this condition the cell has one input, and there-

fore up to three possible outputs.)

A split that is achieved by using the confluent states is shown in

Figure 6b. This figure is drawn according to the scheme of Figure 6a.

This is also true of all subsequent figures, with such exceptions and

modifications as are expressly stated.

2.4 Growth Functions: Unexcitable State and Special

Transmission States

2.4-1 Muscular or growth functions—ordinary vs. special stimuli.

Having finished with the logical (i.e., neuronal) functions in the sense

of Section 1.2.1, we can now pass to the others. In Section 1.2.2 these

were temporarily designated as muscular, but the discussion of Section

1.3 showed that they are more properly viewed and treated as growth

functions (cf. in particular Sees. 1.3.4.2 and 1.3.4.3). At any rate,

we need states to express these functions.

We know (cf. the above references) that this leads over into the

problem of ordinary vs. special stimuli, i.e., of ordinary vs. special

excited states. The ordinary class is the one used for logical purposes,

i.e., the one considered up to now (specifically in Sees. 2.1.3-2.3.2).

The special class is the one that we will have to introduce now, in

order to take care of the functions referred to above.

24.2 Unexcitable state. The purpose of the special class of excited

states is to induce growth in the sense of Sections 1.3.4.2 and 1.3.4.3,

i.e., to transfer cells from unexcitable to excitable states, and within

the latter category also to determine the state's species. As for the

last mentioned determination, we have already stipulated the exist-

ence of several species: the transmission, or T states, which formed

four species, the T a , a = 0, 1, • • •

, 3; and the confluent species C
(cf. Sees. 2.2.2.1 and 2.3.2). Note that each of these actually corre-

3 [In his list of footnotes von Neumann wrote here "Degeneration (?)." I

do not know what he intended. Possibly he was going to say that power ampli-

fication is needed when one input line drives two or more output lines.]
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sponds to two states, with e = 0, 1 (quiescent and excited) : T ac , C £ .

We need nevertheless refer to the species T a , C only, or, to be more

precise, to the states with e = 0 only: T a0 ,
C0 . The reason is that it

suffices to be able to create each excitable species in its quiescent

state. If the excited state is wanted, it can be induced later by ordi-

nary stimuli (for the latter, cf. Sees. 1.3.4.2 and 2.4.1).

It is therefore necessary to introduce the unexcitable state (un-

excitable by ordinary stimuli, cf. the above observations and refer-

ences). We will designate it by U. Before we give a rigorous account

of its properties, however, we must discuss some connected matters.

2.4.3 Direct and reverse processes—special transmission states. It

is desirable not only to be able to effect transfers from the unexcitable

state U into excitable states (for example, T and C; cf. the discussion

in Sec. 2.4.2), but also to have this process reversible, that is, to be

able to effect transfers from the excitable states into U. Various uses

of this two-way operability will appear later. Now the stimuli which

induce all these metamorphoses must be transmitted by cell states

which are not themselves affected by them in such a way. It is there-

fore advisable to introduce a new class of transmission states, say

T', which are in their relationship to each other analogs of the T.

We will therefore have eight such states: Ta£ (a = 0, • • •
, 3; e =

0, 1)—in analogy to the T a€ of Section 2.2.2.1. Accordingly, we pro-

ceed the way we did for the T a€ ,
i.e., in rule (10) of Section 2.2.2.1.

We use the symbols Tac (a = 0, • • •
, 3; e = 0, 1 ) in place of some

eight-number values in expression (6) (cf. the remark after expres-

sions (6) and (7) in Sec. 2.1.2). The rule is:

Assume n/"1 = Tl e .

(13) J
Then n& = Ta i if n<r

l = Ta >i for some

with # — y = v
a —v a

.

Otherwise n# = Ta0 .

2.5 The Reverse Process

2.5.1.1 The reverse process for the ordinary states. We can now give

a rigorous definition of the reverse process, that is, the transfer of an

excitable state (T, C) into an unexcitable one (U) by the special

stimuli (of T'). This takes the form of modifications of the T rules

(10), (12) and of the C rule (11):

(14)

Assume n&
1 = T a€ or C 6 .

Then the following rule overrides the rules of (10), (12) and

of (11):
f f

[n# = U if n^/
1 = Ta a for some with # — &' = v

a
.
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Note that # — ^ — v
a

{in the T case, cf. the similar stipulations

in rules (10) and (12)} is not required; that is, the "kill" by a special

stimulus (from a T') is efficacious even in the output direction (of T).

2.5,1.2 The reverse process for the special states. The reasons which

make the existence of the reverse process (from excitable to unexcita-

ble; cf. Sec. 2.4.3 and later) desirable for the ordinary excitable

states (T, C), operate in the case of the special ones (T') too. How-
ever, rule (14) could not be extended to the T' states; such an effect

of a T' on a T' is inadmissible for the same reason for which the

corresponding effect of a T on a T is inadmissible (cf. Sec. 2.4.3) : it

would destroy the character of the T as transmission states for

special stimuli, just as the corresponding effect would have destroyed

the character of the T as transmission states for ordinary stimuli.

The latter circumstance caused us to introduce the T' (to transfer

the T, as well as the C, into U) ; we can now make a similar use of the

T (to transfer the T' into U). It is advisable, however, not to endow

the C, too, with this property. Indeed, since every direction is an

output direction for C, giving this faculty to C would make it much
more difficult to direct and to control than is desirable. We introduce

therefore this rule, which modifies (13):

fAssume n#~l = t1<= .

(15) \ Then the following rule overrides the rules of (13)

:

[n/ = U if n^T
1 = T a 'i for some with # — # = v

a
.

The remark at the end of Section 2.5.1.1, concerning the outputs,

applies here, too.

2.5.2 Origination of special stimuli. We have not provided so far

for the origination of special pulses, i.e., for the excitation of the T
,

except by each other.

It is not necessary to introduce a complete (logical) neuronic

system for special stimuli, as we did for ordinary stimuli in Sections

2.2.2.1-2.3.4. We can handle all of logics with ordinary stimuli, as

was indeed intended in introducing them (cf. Sees. 1.3.4.2 and

1.3.4.3), and use these to start chains of special stimuli, whenever

necessary. (The physiological analog of this is that logics are re-

stricted to neuronal activity, and that muscular activity is always

induced and controlled by neuronal activity. See Sec. 1.2.2 for

the simile.) Hence we need a class of states which can respond to an

ordinary stimulus by emitting a special one, i.e., which can be excited

by a T and can excite a T'.

Before introducing a new class for this purpose, let us see whether

we might not do it with the existing ones. T does not excite T' {it
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"kills" it; cf. rule (15)} ; hence we can use neither T nor T' for this

purpose. This leaves only C. Now C is excited by a T; hence we need

only endow it with the ability to excite a T'. This can be done. (That

T' does not excite a C—but "kills" it; cf. Sec. 2.5.1.1—is irrelevant

in this connection.) All we need is to stipulate the analog of rule (12)

for T'. Thus the duality of T and T
,
already expressed by the duality

of rules (10) and (13), and by the duality of rules (14) and (15), is

further completed by the duality of (12) and of (16) that we will now
state. This is to be viewed as an insertion between the second and

third sentences of (13), and it is therefore, like the original (13),

overridden by (15). The rule follows:

(
. fAlso n# = T„i , if ni'

1 = Q , for
U ; \some y with 0 - tf' = / ^ -v* (0 = 0, • • •

, 3).

2.6 The Direct Process—Sensitized States

2.6.1 The direct process. The reverse process of Section 2.4.3 (trans-

fer from excitable to unexcitable) having been taken care of, we pass

now to considering the (primarily required) direct process of Section

2.4.2 (transfer from unexcitable to excitable).

The list of species that this process must be able to create has been

extended. We had the T a and C in Section 2.4.2; to these we must

add, since Section 2.4.3, the Ta . In other words, we must be able

to create the following states (for the role of e = 0 compare the

discussion in Sec. 2.4.2)

:

(17)

This is a total of nine states.

Thus we need a mechanism to transfer U into any one of the nine

states of (17). Regarding this mechanism two remarks are in order.

2.6.2.1 First remark: duality of ordinary and special states. We have

two kinds of stimuli at our disposal : ordinary and special, correspond-

ing to the excitation of the T (possibly together with the C) and of

the T' states, respectively. Our original intention had been to use

only the special stimuli, i.e., the T' states, for transforming U into

any one of the nine states of (17) (cf. Sees. 2.4.1 and 2.4.2). Subse-

quently however, in dealing with the reverse process (cf. Sees. 2.4.3-

2.5.2), we let the T (actually without the C) and the T states play

rather complementary and symmetric roles with respect to each

other (cf. the references to "duality" at the end of Sec. 2.5.2). It is

therefore tempting to assign to them similarly symmetric roles in

connection with the direct process.

This might again be done in a dual way, i.e., by using the T for
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transfers from U to T (and to C) and the T for transfers from U to

T'. However, even this limitation will prove to be unnecessary, and

a satisfactory system can be built by stipulating that T and T' have

identical and interchangable effects on U for transfers into all states

T, C, and T' {i.e., all nine states of (17)}.

This raises the question of why T' had to be introduced at all, if T
alone can induce and control all transfers from U. The answer is that

the reverse process called for T' because of the contrast between

transmission and causing transfer into U; compare rules (10) and

(12) with rule (14), and rules (13) and (16) with rule (15). More-

over, the reverse process (transfer from T, T', or C into U) is a

prerequisite for a proper control of the direct process (transfer from

U into T, T', or C—or even into T or C only). This point deserves

somewhat closer consideration.

2.6,2.2 The need for the reverse process. In Figure 7, cells 1, • • •
, 9

constitute an area of 3 X 3 cells (i.e., lattice points; cf. the explana-

tion of Fig. 4c) which is to be organized, that is, transferred from the

U states into various (prescribed) states, e.g., T states. This organiza-

tion of cells 1, • • •
, 9 is to originate from and be controlled by area 0.

Consider the transfer of the middle cell, number 5. Whether this is

done by ordinary or by special pulses (i.e., by T or by T' excitations),

an unbroken chain of (T or T') transmission cells must be laid down,

from the area of the origination and logical control of these excita-

tions to the cell to be operated on, in this case number 5. In Figure 7

the cells marked with arrows form the chain; they may be T a accord-

ing to Figure 5 or their corresponding Ta . This chain must cross the

ring of cells that surround the target cell number 5, i.e., the ring of

cells numbered 1, • • •

, 4, 6, • • •
, 9. In Figure 7 the chain crosses at

cell number 8.

Now the desired organization of the area 1, • • •
, 9 may provide

for the cell of the cross-over (in this case number 8; cf. above) another

(quiescent ) state than that of the chain. (The latter must be a T a

or a Ta state, with v
a

in the direction of the chain; this is a = 1 in

the present case; cf. Figs. 4b and 7.) Hence the organization of this

cell cannot have occurred before that of cell number 5. If it is to occur

after that of cell number 5, then the (T or T') cell of the chain that

is involved must be transferred into the desired state. Since the direct

process allows the transfer from U into any desired state, it is simplest

to provide for a way to transfer from the present (T or T') state into

U. Hence the reverse process is indeed necessary.

2.6.3.1 Second remark: the need for fixed stimulus sequences to con-

trol the direct process. We observed near the end of Section 2.6.2.1
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that the direct process {i.e., the transfer from U into the states of list

(17)} should be effected by the stimuli due to T and T' excitations,

and that it will prove possible to let both (i.e., T and T') have

exactly the same effects in this respect. It will also appear later that

this arrangement is more economical in some relevant ways than its

obvious alternatives.

It is again advisable to exclude the C from this process. The reasons

for using the direct process here are the same as those given (in Sec.

2.5.1.2) for using the reverse process. Note in addition that, just

because every direction is an output direction for C, it is often neces-

sary to protect certain sides of a C, and for this function a U is

natural (cf. later). Hence it would be most inconvenient if a C had

any effect on a U.

The direct process must provide for transfers from U into every one

of the nine states of list (17). These nine alternatives are too many to

be handled by a single stimulus, even if T and T' excitations had

different effects. Besides, we stipulated that T and T' have the same

effects in this process. Hence the nine alternatives which are now
needed must be expressed by some binary coded stimulus sequence.

In this binary code a digit 1 is expressed by a stimulus (T or T'),

while a digit 0 is expressed by the absence of a stimulus. Coded

sequences of length three can express eight alternatives: 000, 001, • • •
,

111. Since nine alternatives are wanted, one of these—e.g., the first

one, 000—must be made to express two further alternatives; i.e., it

must be continued to 0000 and 0001. Thus we end up with the nine

coded sequences

This must be made to correspond to the nine states of list (17).

The nine coded sequences of list (18) will have to be built up

successively from their constituent digits 0 and 1. That is, in the

(direct) process of transfer, U will have to go through intermediate

states corresponding to the subsequences encountered in building

up the nine coded sequences of list (18). These coded subsequences

are

i.e., their number is seven. Finally, there must be a state correspond-

ing to the beginning of the process, where the formation of the coded

sequence {going through subsequences of list (19) to a sequence of

list (18)} has not yet begun. Here the coded subsequence is best

(18)
0000, 0001, 001, 010, 011

100, 101, 110, 111.

(19)
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interpreted as being (in its initial condition) the empty set, to he

designated

(20) e.

2.6.3.2 Additional states required. Let us use a common symbol 2

for the 17 coded sequences of lists (20), (19), and (18). These must

correspond to 17 states to be designated Sz . However, the with

the 9 2 of list (18) must be the 9 states of list (17); i.e., these are

not new states. In addition, we must consider whether it is not natural

and proper to make Ss with the 2 of (20) (i.e., Se) coincide with U.

The direct process goes from Se through the S2 of list (19) to the

Ss of list (18) {i.e., to the states of list (17)}, by adding a digit 1 to

2 when a (T or T') stimulus occurs, and by adding a digit 0 to 2

when no stimulus occurs. { Of course, this process of increasing 2 ceases

to operate when 2 has reached its maximum size (18). Then we deal

with the states of list (17), and these are governed by the rules (10)-

(16).} This means that the evolution from Se to the final Ss {with-2

maximal, i.e., according to list (18)} is rigidly timed. The absence of

the stimulus has as definite an effect as the presence of one, and there-

fore the stimuli that are required must be delivered at definite times,

without any delays other than the expressly required ones. On the

other hand, U was always conceived of as a quiescent state; it should

not change unless it receives a stimulus. Combining these two facts,

we see therefore that U and Se must not be identified. Thus we come

out with eight new states, namely the Ss with the 2 of lists (20) and

(19).

2.6.4 Sensitized states. We call the new states, to which Sections

2.6.3.1 and 2.6.3.2 lead us, sensitized states. To restate, these are the

Ss , with 2 according to lists (20) and (19), but not according to list

(18) {the latter being the old states of list (17)}.

The rigorous rules that control the behavior of U and of the sensi-

tized states can now be extracted from the discussions of Sections

2.6.3.1 and 2.6.3.2. These rules are:

Assume n/
_1 = U.

Thenn^ = Se if n#~
l = TViorTU

for some with # — &' = v
a

.

^ Otherwise n# = U.

f
Assume n/"1 = Ss with a 2 of (20) or (19).

j
Then n/ = S21 if n^T

1 = TVi or

]
for some with # — &' — v

a '

.

Otherwise n& = Sso.

[Note that Sao = So , S01O = S10 , Sam = Sm , etc. ]

(21)
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2.7 Even and Odd Delays

2.7.1 Even delays by path differences. We have completed the de-

scription of the direct process of Section 2.4.2 (cf. Sec. 2.6), i.e., of

the process that operates the transfers from U into the states of list

(17) . We noted in Section 2.6.3.2 that the direct process is rigidly

timed, that is, that each state of (17) calls for certain stimuli delivered

at definite distances in time from each other. To be more specific,

to get from S$ to the states of list (17), i.e., to the S2 with 2 from

list (18), the uninterrupted stimulus-no-stimulus sequences of list

(18) are needed, according to rule (22). These are certain sequences

of lengths three and four. Since we actually want to start from U,

we must also apply rule (21); that is, we must have one stimulus

immediately before this sequence. Hence the complete requirement

prescribes certain uninterrupted stimulus-no-stimulus sequences of

lengths four and five.

In a properly organized control system such a sequence will be

induced by a suitable (single) control stimulus. To get a prescribed

train of stimuli during four or five consecutive moments t {t is integer

valued; cf. expression (5)} from a (single) control stimulus, some

multiple delay system is needed. See Figure 8. If the (single) control

stimulus appears at a lattice point A, and if the prescribed stimulus-

no-stimulus sequence is wanted at a lattice point B, then it is neces-

sary to route the excitation from A to B over several paths, which

produce, relatively to each other, definite delay differences. Indeed

let (P be the path from A to B, over which the excitation arrives first

to B. Then the other paths from A to B, say (Pi , (P2 ,
• • •

, must

produce delays against (P that are equal to the distances of the stimuli

prescribed in the desired stimulus-no-stimulus sequence from its

first stimulus (the one required by rule (21); cf. above). Figure 8

exemplifies such a situation. [The delay on the output side of cell A
to an input side of cell B is 7 along path (P, 17 along path (Pi , and 37

along path (P2 . If these paths are stimulated at time zero, stimuli will

enter cell B at times 7, 17, and 37.]

2.7.2.1 Odd delays and single delays. It is clear, however, that only

even delays can be produced in this manner: the lengths of any two

paths connecting two given points A and B differ by an even number.

Yet the sequences of list (18) {as required by list (22)} preceded by a

(stimulus) digit 1 {as required by list (21)} may contain digits 1

(i.e., stimuli) at odd distances. This conflict must be resolved. The
resolution can be effected in various ways.

First, the principle of even difference of lengths between paths

connecting the same two points depends for its validity on the crystal
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lattice used. It holds for the quadratic lattice that we use here, but

it fails for some other lattices. We might therefore consider changing

the crystal lattice.

Second, we could lengthen the sequences of list (18) by inserting

(no stimulus) digits 0, so as to make all the distances between the

(stimulus) digits 1 {including the prefatory 1 required by rule (21)}

even. This would increase the number of the subsequences encoun-

tered in building up the sequences of list (18), i.e., the number of

the subsequences according to list (19). Thus there would have to be

more sensitized states.

Third, we can introduce the odd delays directly. It is clearly suffi-

cient to introduce a single delay. This means that we need an excited

state, which occurs at time t, not after a stimulation at time t — 1

(as in all cases so far considered, i.e., for T, T', C), but after a stimula-

tion at time t — 2.

2.7.2,2 Single delays through the confluent states. A closer inspection

indicates that, of the three alternatives described in Section 2.7.2.1,

the last one is most convenient, and particularly most economical

with respect to the number of new states required. In this connection

two additional remarks are in order.

First, it suffices to supply a single delay mechanism for ordinary

(T) stimuli. Indeed, special (T') stimuli can be obtained from the

ordinary ones by a fixed delay conversion process {namely (16)}.

That is, if a rigidly timed sequence (in the sense of Sec. 2.7.1) of

special (T') stimuli is wanted, it is practical to produce it first (with

a delay system according to Sec. 2.7.2.1) with ordinary (T) stimuli,

and then convert from ordinary to special {with the help of rule (16)}

Second, in order to introduce a single delay for ordinary stimuli,

it is not necessary to introduce a new kind of state; it suffices to

utilize and expand an existing kind. Indeed, it is quite practical to

attribute this trait to C, because the other necessary functions of C
need not be impaired by such a change.

That this is so will become clear in the course of our actual uses of

C. For the present we will limit ourselves to formulating those changes

in the rules that govern the behavior of C which are needed to

introduce the desired (single) delay.

At present the excitation of C is described by rule (11). The
stimulating effect of C is described by rules (12) and (16); the

"killing" of C (i.e., its transfer into U) is described by rule (14).

Under these rules C has the states C £ , where the index e = 0, 1

describes the present state of excitation. If the excitation is to be

delayed by a single time unit, then C must remember for that length
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of time what its state of excitation will be next. Hence two indices,

e.g., €, e', will be needed. The states will be C €£ > , where the index

€ = 0, 1 describes the present state of excitation, and the index

e = 0, 1 describes the next state of excitation. The effects on rule

(11), and on rules (12), (14), and (16) are therefore the following.

In rule (11): where C £ (for t — 1) was transferred into C e >> (for

t), now C eC '
,
(for t — 1) should be transferred into C e

'
e >> (for t).

In rules (12), (14), and (16): the role of C t (for / - 1) is taken

over by C tc >
,
(for I — 1 )

.

Furthermore, it is natural that in the list (17) the (quiescent)

slate Co should be replaced by the (completely quiescent) state Coo

.

The rigorous statements of the necessary modifications are accord-

ingly these:

In rule (11) replace n#~ l = C 6 by n#~ l = C €C '
,

replace n# = Ci by n# = C e 'i , and

(2°) <
rePlace n»

= Cobyn/ = C c
> 0 .

I In rules (12) and (16) replace n^1 = Ci by n#~
l = Cw ;

in rule (14) replace n&~ 1 = C c by n#~ l = C CC ' .

In list (17) replace C0 by Coo

.

To conclude, we observe that with this method of introducing a

(single) delay we replace the two states C 6 by the four states C ce '
;

that is, we introduced two new states.

2.8 Summary

2.8.1 Rigorous description of the states and of the transition rule.

We can now give a rigorous summary, i.e., a complete list of states

and an exhaustive transition rule.

Let us write Tu , u = 0, 1, in place of T, T', respectively. Corres-

pondingly, let us call the ordinary stimuli and the special stimuli

stimuli [0] and stimuli [1], respectively.

The enumeration of states becomes this

:

(S) The states:

The states are the following ones

:

The transmission states Tuai , where u = 0, 1 correspond to ordinary

and special; a = 0, 1, 2, 3 to right, up, left, down; e = 0, 1 to quiescent

and excited.

The confluent states C ee ' , where e = 0, 1 correspond to quiescent

and excited; e = 0, 1 to next quiescent and next excited.

The unexcitable state U.
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The sensitized states Ss—where 2 has the range

(5.1) 2 = 0,0, 1,00,01, 10, 11,000.

In addition, the Ss with

(5.2) 2 = 0000, 0001, 001, 010, Oil, 100, 101, 110, 111,

in this order, are identified with

(5.3) Tua0 (u = 0, 1; a = 0, 1, 2, 3) and C00

in the order Tooo , Toio , T020
, T030 , T100 , Tno , T120 , T130 , Coo . This is

a total of 16 (transmission) + 4 (confluent) + 1 (unexcitable) +
8 (sensitized) = 29 states. Hence

(24) N = 29,

and the symbols Twa£ (u = 0, l;a = 0, 1,2,3; e = 0,1), C e€, (e = 0, 1;

e = 0, 1), U, Ss {2 according to (S.l)} will be used in place of the 29

number values in expression (6) (cf. the remark after expressions (6)

and (7) in Sec. 2.1.2).

Let us now consider the transition rule. First, note that the num-
ber of possibilities for this rule (i.e., for the function F in the sense

of Sec. 2.1.2) is, according to expression (9) with N = 29,

(25) 29
(295) & io

30
'
000

'
000

(with three significant figures in the exponent). Second, the rules

(10)- (16) and (21)- (23) constitute together the transition rule,

and they can be summarized as follows.

(T) The transition rule:

Assume n#~ l = Tuae .

(a) n$ = U if and only if n^T
1 = Tu > a 'i ,

for some with $ — §' = v
a
\ and also 11 ^

u .

((3) n/ = Tuai if and only if (a) does not hold

™ jv
^

and either (a) or (b) holds:

J

(a) n^T
1 = TMa 'i for some with

# - y = v
a ' ^ - v

a
.

(b) n^T
1 = Cu > for some with

# - y = / ^ — tF*o = 0, ••• ,3).

(7) n$ = Tuao if and only if neither (a) nor (/3)

holds.
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Assume n\
1 = C«'

t—i
Ti a 'i ,

(T.3)

(T.4)

(a) n& = U if and only if

for some &' with # — = v
a

'

.

(P) n» = C C 'i if and only if (a) does not hold

and both (a) and (b) hold:

(T.2) \ (a) n
l

i>
1 = T0 «'i for some 0 with

# - y = v
a
\

(b) Never n^T
1 = T0a 'o for an &' with

# - y =

(7) = C € 'o if and only if neither (a) nor (0)

holds.

Assume n#
_1 = U.

(a) n& = Se if and only if n^T
1 = Tu «'i

,

for some & with # — $ =

(iS) n^' = U if and only if (a) does not hold.

Assume ni'
1 = Ss {with 2 according to list (S.l)}.

(a) n# = Ssi if and only if n^T
1 = Ttttt'i

,

for some with & — ft' = v
a

'

.

(/3) n# = Sso if and only if (a) does not hold.

2.8.2 Verbal summary. The rigorous summary of Section 2.8.1 is

a strict restatement of the verbal formulations and conclusions

arrived at in Sections 2.2-2.7. In this sense, a verbal statement of

the strict and formalistic contents of Section 2.8.1 is available in

those sections. However, it seems desirable to give at this point a

verbal restatement of the contents of Section 2.8.1, i.e., of its descrip-

tions of the states and of the transition rule. Indeed, the formalism

of Section 2.8.1 is not easy to follow without the verbal motivations

of Sections 2.2-2.7. On the other hand, the verbal elaborations of

those sections are lengthy and were arrived at stepwise. A direct

verbal restatement is therefore indicated.

Such a restatement, covering the states and the transition rule

together, is given in what follows.

There exist 16 transmission states Tua e . The index u indicates the

class of the state: u = 0 for ordinary and u = 1 for special. The index

a indicates the orientation of the state: a = 0 for right, a = 1 for

up, a = 2 for left, and a = 3 for down. The index e indicates the pres-

ent state of excitation: e = 0 for quiescent, and e = 1 for excited.

A transmission state has one output direction and three input direc-

tions: the former is the direction defined by its orientation; the latter

are all the others. A transmission state can be excited with a delay 1,

by any immediately neighboring excited transmission state of the
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same class, provided that the former lies in the output direction of

the latter, which in turn must be lying in one of the former's input

directions.

There exist four confluent states C €C ' . The index e indicates the

present state of excitation, the index e indicates the next state of

excitation: e or e = 0 for quiescent, and e or e = 1 for excited. The
confluent states are viewed as being of class 0. For a confluent state,

all directions are available both for inputs and for outputs. [But at

any given time a direction cannot be used for both an input and an

output.] A confluent state can be excited with a delay 2 by those

immediately neighboring transmission states of its own class (i.e., 0)

in whose output direction it lies. The excitation will take place if

there exists at least one such immediate neighbor, and if all such

immediate neighbors (whatever their number) are excited.

A transmission state (of either class) can also be excited with a

delay 1 by any immediately neighboring excited confluent state,

provided that the latter lies in one of the former's input directions.

There exists an unexcitable state U. This state is viewed as quies-

cent. Any transmission or confluent state is killed (i.e., transferred

into the unexcitable state) by any immediately neighboring excited

transmission state of the opposite class, provided that the former

lies in the latter 's output direction.

All the above states (transmission and confluent) go into their

quiescent forms when no excitation or kill, according to the above

rules, is provided for.

There exist eight sensitized states Sz , with 2 according to list (S.l).

We will also use the symbol Ss with 2 according to list (S.2), but

these latter states are not considered to be sensitized ones. They are

identified with the quiescent transmission and quiescent confluent

states according to list (S.3). (For the references to lists (S.1)-(S.3),

cf. Sec. 2.8.1.) A sensitized state Ss will in any case undergo a change

(immediately, i.e., with a delay 1 ), namely into Sso or S21 . The change

into S21 will take place under the influence of any immediately

neighboring excited transmission state (of either class), provided

that the sensitized state lies in the output direction of the latter.

Otherwise, a change into S20 will take place.

We re-emphasize that this last mentioned rule applies only as long

as the state is sensitized, i.e., as long as 2 is according to list (S.l),

and not according to list (S.2) (i.e., as long as it has not reached a

maximum size).

[ 2.8.3 Illustrations of the transition rule. Each cell of von Neumann's
infinite cellular structure is occupied by the same 29-state finite
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automaton. As explained in Section 1.3.3.5, an "infinite cellular

automaton" consists of this infinite cellular structure together with

an initial cell assignment. An "initial cell assignment" is a finite list

of cells together with an assignment of a state to each cell of the list;

all cells not in the list are assigned the unexcitable state U. An initial

cell assignment determines the state of an infinite cellular automaton

at time zero. The history of the infinite cellular automaton is then

determined by the transition rule, which gives the state of each 29-

state finite automaton at time t + 1 as a function of its own state

and the states of its four immediate neighbors at time t.

The 29 states and their transition rule are summarized in Figures

9 and 10. Von Neumann also symbolized pairs of transmission states

by a zero (for ordinary) or a one (for special), together with an arrow

indicating the output direction. For example, the pair of states T0oe

is represented by °> , while Tn € is represented by 1 1

.

There are many ways of viewing the 29-state automaton which

occupies a single cell of von Neumann's cellular structure. It can be

viewed as a finite automaton which is constructed from switch ele-

ments and delay elements and which is connected to its four immediate

neighbors by wires crossing its four boundaries. In what follows it is

more fruitful to view it as a set of primitive elements (sub-automata)

together with control apparatus for switching back and forth among
these elements. This amounts to partitioning the 29-states of a cell

into subsets which correspond to certain functions.

Consider as an example the pair of transmission states T0oo and

Tooi
,

i.e., Too € for e = 0, 1. This pair of states functions as a disjunc-

tion (+ neuron) feeding a unit delay whose output is directed to the

right. The potential inputs of Too* are from its immediate neighbors

above it, to its left, and below it. These inputs come from confluent

states or from other ordinary transmission states which are directed

toward it. Thus in Figure 11a, the cell T0oe behaves as follows. If

either Ci e ' or Ton at t, then Tooi at t + 1; if both Co e ' and T0io at t,

then Tooo at t + 1. In other words, as long as Figure 11a is limited

to the states shown there, the two states Too* can be thought of as

constituting a disjunctive element with inputs from the left and be-

low and an output (after unit delay) to the right (at/).

The set of four confluent states C t€ ' (e, e = 0, 1) perform the func-

tions of conjunction ("and", "•"), double delay, wire branching

(splitting), and conversion of ordinary stimuli into special stimuli;

von Neumann also symbolized these four states by C. These states

have no direction, the direction of their functioning being determined

by the directions of the transmission states (both ordinary and
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special) in the four immediately neighboring cells. Consider a set of

states C £t ' occupying a given cell. The inputs to this set C eC ' are from

ordinary transmission states directed toward it. The outputs from

this set C CC ' are to both ordinary and special transmission states not

directed toward it. See Figures lib and 11c. In Figure lib the cell

C C€ ' behaves as follows. If both Tooi and Ton at t, then C e 'i at t + 1

and Cie" at t + 2; if either Tooo or Toio at t, then C C
' 0 at t + 1 and

Coe" at t + 2. In other words, in the context of Figure lib, the four

states C et ' can be thought of as constituting a conjunctive element

with inputs from the left and below and with output (after two units

of delay) to the right (at g).

It is convenient to think of the state e of a Twa€ cell or a C cc > cell

as its output state at a given time, and to think of the composite

state of its immediate neighbors as its input state at that time. It is

also convenient to use short bars to indicate an input to a cell (a, 6, c,

d, and e of Fig. 11) or as output from a cell (/, g, h, i, and j of Fig.

11). Under this convention, we have for Figure 1 1

:

f(t + 3) = [a(t) + b(t + 1)]

g(t + S) = [c(t)-d(t)]

h(t + 4) = e(t)

i(t + 5) = e(t)

j(« + 4) = e(t).

All the outputs are ordinary stimuli except that the output j is a

special stimulus.

Each switching function (truth function) of disjunction (+) and

conjunction (•) can be realized, with suitable delay, by a cellular

network of ordinary states (To ac and C«')« Storage loops may be

made of ordinary states. In Figure 12 the loop Bl, B2, A2, Al stores

the sequence 10000, which will cycle around the square ad infinitum,

continually feeding into cell Cl . Negation is not represented directly

in the 29 states but is synthesized from the destructive (reverse ) and

constructive (direct) processes. See Section 3.2.2 and Figure 17 below.

The direct process changes a cell from the unexcitable state U into

one of the nine quiescent states TMa0 (u = 0, 1; a = 0, 1, 2, 3) or

Coo . Transmission states (ordinary or special) directed toward U
initiate and control the direct process, and sensitized states serve as

intermediaries. Any (or several) Tuai directed toward U converts it

to Se . Thereafter Ss is followed by (a) Ssi if some Twai is directed

toward the cell, (b) Sso otherwise, until the direct process terminates

in a Twa0 or Coo in accordance with Figure 10. For example, when
sent into a cell which is in state U, the sequence 10000 produces
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Tooo, the sequence 1011 produces Tioo , and the sequence 1111 pro-

duces Coo

.

The direct process is illustrated in Figure 12. As indicated by the

subscripts (values of e and e'), the loop Bl, B2, A2, Al, stores the

sequence 10000 in that order at time zero. This sequence will cycle

around the loop ad infinitum, repeatedly feeding into cell Cl. It

will pass through cell Cl with a unit delay. Its effect on cell Dl through

time is as follows:

Time: 0 12 3 4 5 6 7

Input to Dl: 0 1 0 0 0 0 1 0

State of Dl: U U Se So Soo Sooo Tooo Tooi • • • .

The process will now repeat, with cell Dl feeding the sequence 10000

into the cell on its right, causing it to pass through the sequence

S* , So , Soo , Sooo , Tooo , Tooi ,
• • •

. This process will again repeat,

ad infinitum. Thus an infinite cellular automaton which has the first

pattern of Figure 12 as its initial cell assignment will grow an ever

lengthening communication channel 0> Z t • • • to the right.

The reverse process (destruction, killing) changes any transmission

state Tuat and any confluent state C ce > into U. An excited ordinary

transmission state T0ai kills a special transmission state Ti ae toward

which it is directed, and an excited special transmission state Tiai

kills an ordinary transmission state To a€ or confluent state C cc >

toward which it is directed. Examples are given in Figure 13. In

Figures 13a and 13b cells shown with question marks at time 1 are

so marked because their states at this time depend on the states of

the cells in the surrounding environment. Except for Figures 13a

and 13b, we always assume that the finite cellular arrays of our figures

are not affected by the direct or reverse process operating on them
from the environment. Note that the special and ordinary transmis-

sion states of Figure 13b kill each other.

The reverse process dominates reception. If a "kill" stimulus enters

a cell at time t, that cell will be in state U at time t + 1, no matter

what other stimuli may have entered the cell at time t. On the other

hand, killing does not dominate emission, in the sense that if a cell is

prepared to emit a stimulus at time t it will in fact emit that stimulus,

even though it also receives a kill stimulus at time t. We will illustrate

these facts with Figure 13c.

Assume in Figure 13c that ordinary stimuli enter input a at times 0

and 1 , a special stimulus enters input c at time 1 , and no other stimuli

enter the figure at any other time. The ordinary stimulus entering a

at time 0 enters cell Bl at time 1, leaves cell Bl at time 2, and leaves
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cell Cl (output b) at time 3. The special stimulus which enters input

c at time 1 enters cell Bl at time 2, causing cell Bl to be in state U
at time 3. The ordinary stimulus entering a at time 1 enters cell Bl

at time 2, but, since the special kill stimulus also enters cell Bl at

time 1, the ordinary stimulus has no effect. Hence the first ordinary

stimulus into input a is transmitted through cells Al, Bl, Cl and is

emitted from output 6, but the second ordinary stimulus into input a

is dominated by the kill stimulus from input c and is lost.

One fundamental construction in the cellular system is to change

the state of a remote cell by the direct process and then wipe out the

constructing path used for the construction. The technique is illus-

trated in Figure 14. Ordinary stimuli are fed alternately into inputs

i and j, they travel along the path B2-D2, and cell D3 is left in the

quiescent state. The sequences required are as follows (cf. Fig. 10).

(a) Input i is supplied with 10000, 10000, 1010, and 1111. The path

B2-D2 becomes an ordinary transmission channel, and cell D3 is

left in the desired state C, as in Figure 14b. (b) Input j is supplied

with 1,1011; 1,1011; and 1. The cells B2 and C2 become U, Se ,
S 0 , Soi

and Son (i.e., Tioo) in turn. The cell D2 becomes U, as in Figure 14c.

(c) The sequence 1,10000, and 1 into i produces Figure 14d. (d)

Finally, the single stimulus 1 into j produces Figure 14e. Thus we
are left with cell D3 in the desired state and with the constructing

path B2-D2 in the unexcitable state.

The transformations of Figure 14 require 37 time steps, measuring

time from the input sides of cell B2. As described above, stimuli come

from inputs i and j alternately, but, since the absence of a stimulus is

represented by "0," we can think of a sequence of length 37 going

into cell B2 via input i and a simultaneous sequence of length 37

going into cell B2 via input j. The path from input j to cell B2 re-

quires 2 more units of time than the path from input i to cell B2;

hence the input to j must lead the input to i by 2 units of time. Con-

sequently, the transformation from Figure 14a to Figure 14e will be

brought about by the two 36-bit sequences of ordinary stimuli shown

at the bottom of Figure 14; in these sequences time goes from left to

right. The sequence for input i may be obtained by prefixing i with a

sequence of 36 cells in states Too* , each e being chosen according to

the needed input into i. Likewise, the sequence for input j may be

obtained by prefixing j with a sequence of 36 cells in the appropriate

Tooc states.

The above technique may be used to construct an arbitrary finite

array d of quiescent cells, i.e., cells in the states U, Twa0 (u = 0, 1;

a = 0, 1, 2, 3), or Coo . For each such array (2, there are two binary
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sequences of stimuli which, when fed into inputs i and j of Figure 14,

will produce the array & to the right. Moreover, these two sequences

will emanate from two linear arrays of cells in the states T0o € , with

the e's properly chosen. These two linear arrays, together with cells

Al, A4, B1-B4 of Figure 14 constitute an array (B. Thus we have the

following result about constructions in von Neumann's cellular

structure: for each quiescent finite array Ct, there is a finite array (B

and a time r such that array Ct will appear at time r in the infinite

cellular automaton which has (B as its initial cell assignment. More-

over, the limitation that the cells of array & be quiescent, while

important (cf. Sec. 1.6.3.2 above), is not serious, for the array (B

can impart a starting stimulus to array & before returning the con-

structing path to the unexcitable state.

It is clear from the previous construction that area (B is always

larger (contains more cells) than CL Compare Section 1.6.1.1 above.

Von Neumann circumvents this difficulty by designing a universal

constructing automaton D and attaching to it a tape description of

itself LD ; see Section 1.6.1.2 above. This universal constructing

automaton will have, among other powers, the power of a universal

Turing machine. The technique of Figure 14 will play an essential

role in the operation of this universal constructing automaton C.

See Chapters 4 and 5 below.]



Chapter

DESIGN OF SOME BASIC ORGANS

3.1 Introduction

3.1.1 Free and rigid timing, periodic repetition, and phase stop.

The organs that will be constructed in the sections that follow will

exhibit two relevant traits (separately or jointly): free timing and

rigid timing.

We have free timing when the emission of certain stimuli (at a

specified point and in a certain order) is provided for, but the time

intervals or delays from one such emission to the next are not pre-

scribed.

We have rigid timing when the delays of the above pattern are

numerically specified. We may alternatively express this by stating

that these delay periods are filled with "no stimuli." (Clearly there

will be d — 1 of these for a delay period between a prescribed stimu-

lus and its successor, if the specified delay between these two is d.)

The rigidly timed sequence of stimuli can therefore also be described

as a "stimulus-no-simulus sequence" of uninterruptedly consecutive

events. In this form it will be designated by a sequence of O's and l's,

each 1 standing for a "stimulus," and each 0 for a "no stimulus":

ft ... jn (each i
v = 0, 1). Whenever this notation i

1
• • • i

n is used,

rigid timing is implied.

[The direct process of Section 2.6.3.2 above involves rigid timing.

As von Neumann said there, in rigid timing "the absence of a stimu-

lus has as definite an effect as the presence of one, and therefore the

stimuli that are required must be delivered at definite times, without

any delays other than the expressly required ones."

As we saw in Section 1.3.3.5, there is no bound on the number of

cells which can be in the excited state at any given time, though of

course this number is always finite. Thus von Neumann's cellular

structure allows for an indefinite amount of parallelism. But in de-

signing his self-reproducing automaton von Neumann did not make
much use of the potential parallelism of his cellular structure. Rather,

his self-reproducing automaton works like a serial digital computer,

157
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with most organs normally quiescent. In this respect it is similar to

the EDVAC (see pp. 9-11 above).

When an organ of the self-reproducing automaton is stimulated by

a sequence containing one or more stimuli, the organ will produce an

output (response) after a delay. Usually the delay between input

and output doesn't matter, because no other construction or com-

putation is going on simultaneously. Likewise, the delay between

one input to an organ and the next input to that organ does not usually

matter, provided that this delay is sufficiently great for the organ

to finish one action before starting the next. The main exception to

these statements concerns the tape unit of Chapter 4 below. The
method von Neumann used for lengthening and shortening the tape

requires simultaneous (parallel) action in two connecting loops.]

By a periodic repetition of such a sequence i
l

• • • i
n a rigidly timed

periodic repetition is meant, i.e., one with uninterruptedly consecutive

periods i
l

• • • i
n

, unless the opposite is expressly stated. Thus a periodi-

cally repeated i
l

• • • i
n

, to be designated i
1

• • • i
n

, means i
l

• • • i
n
i
l

• • •

i
n
i
l

- - - i
n Such periodic repetitions are never intended to

go on indefinitely. By a stop in phase k (= 1, • • •

,
n) in period s

(= 1,2, • • • ), we mean that the sequence is interrupted immediately

before the i
k
in the s-th period (i.e., no stimuli are emitted at this

time or later). We may also call this a stop at step I with I = nx + k

(I = 1,2, • • • ). By a stop in period s (without stating a phase) we
mean one in phase 1 (i.e., at step ns + 1 ).

8.1.2 Construction of organs, simple and composite. We will now
construct successively certain organs, going from the simpler to the

more complicated. Most of these organs will be composites of previ-

ously defined organs with each other and with suitable controlling

and connecting networks. Each one of the organs to be defined will

be given a name and a symbol, so that it can be identified when it

occurs as a part of a subsequent larger, composite organ.

[In some cases von Neumann gave algorithms for designing any

organ of a given class; this is so for pulsers (Sec. 3.2), decoding

organs (Sec. 3.3), and coded channels (Sec. 3.6). In the case of the

triple-return counter (Sec. 3.4) and the 1 vs. 10101 discriminator

(Sec. 3.5), he designed specific organs. To make von Neumann's

algorithms and constructions easier to follow, we discuss a completed

organ at the beginning of each section.

Since von Neumann was interested in an existence proof of self-

reproduction he did not, in general, attempt to minimize his design.]



DESIGN OF SOME BASIC ORGANS 159

3.2 Pulsers

3.2.1 The pulser: structure, dimensions, and timing.

[ Figure 15 shows two pulsers designed according to von Neumann's
algorithm. We will explain how they work.

A stimulus (e.g., Tooi) into input a of pulser P(lll) at time t is

split at each confluent element and produces a sequence 111 from

output b at times t + 9, t + 10, and 2+11. The cross-hatched

cell is in the unexcitable state U.

The characteristic 10010001 contains three ones, so three paths (B,

D, and F) are needed for P (10010001), with relative delays 0, 3, and

7, respectively. The confluent cells along the bottom produce relative

delays of 0, 1, and 2, respectively. Additional delays are achieved

in two ways. Replacing two ordinary-up transmission states by a

block like C5, C6, D5, and D6 adds two units of delay to a path;

by this means we get relative delays of 0, 3, and 6 in the three paths.

Replacing an ordinary transmission state in row 2 by a confluent

state (e.g., F2) adds a unit of delay to a path; in this way we ob-

tain relative delays of 0, 3, and 7 in the three paths B, D, and F,

respectively.]

We begin with the pulser. This organ has an input a and an output

b. Upon a stimulus at a it will emit a prescribed sequence i • • • i
n
at b.

The relation between the stimulus at a and the response at b is

freely timed; i.e., the delay between these is not prescribed at this

point (cf., however, the remarks at the end of this subsection).

This pulser has the symbol J*(i l ••• i
n
). The sequence i

l ••• i
n

,

which can be prescribed at will, is its characteristic; n is its order.

The principles involved in constructing a pulser are quite simple.

The actual network is successively developed in Figure 16. This

construction and the network that results from it will be discussed

in the balance of this section.

Let vi ,
• • •

,
vk be the v for which i

v = 1, i.e., the positions of

the stimuli in the sequence i
1

• • • i
n

. Then 1 <> v\ < V2 < • • • < pjc S n>

Hence vh ^ h. Write

The input stimulus at a must be broken up, or rather multiplexed

into k distinct stimuli, numbers h = 1, • • •
,
k, arriving at b with the

relative delays ¥h (h = 1, • • •
,
k), respectively.

Consider first the network of Figure 16a. A stimulus arriving at a

where pn = 0, 1, 2, • • •
; rn = 0, 1.
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has k paths available to reach b: on path number h(h = 1, • • •
,
k)

it goes horizontally from a to the C number h, then it turns vertically

up, ascends to the top line, and continues there horizontally to b.

There are (2h - 1) + u + (2(k - h) + 1) = 2k + u steps, but,

since h of them are C's, the entire delay involved is (2k + u) + h.

That is, path number h has the relative delay (relatively to the

other paths!) h.

Note that this network has the width 2k — 1, but that its height

u + 2 is still undetermined, along with u.

We must now replace the relative delay h of the path number h

in Figure 16a by a relative delay vh (for each h = 1, • • •
,
k)

\
i.e.,

we must increase it by vh — h = 2\x h + rh {cf. formula (l')}. We
replace therefore each one of the k vertical branches in Figure 16a

by a suitable delay network, say branch number h by a network

Nh , as shown in Figure 16b. (We have also moved input a one step

left, by placing a ° before the first C.) Hence Nh must produce a

delay 2fxh + rh .

Nh is showTn again in Figure 16c, indicating its input Ch and its

output dh . (ch is immediately above the C number h, dh above this,

under the top line, i.e., immediately below the !t number 2h — 1

in the top line.) To achieve the desired delay 2/u + rh , Nh may be

built up by stacking ^ delay-two blocks vertically, plus a single

delay-one block if = 1. The former are shown in Figure 16d; their

height is 2. The latter is shown in Figure 16e; its height is 1. The

total height of Nh is then adjusted to the uniform value u by in-

serting an ordinary vertical ascent of length u — 2\ih — rh = u —
(vh — h) = Sh {cf. formula (l')}. This is shown in Figure 16f. (The

delays referred to above are, of course, always relative ones, compared

to an ordinary vertical ascent.) It is best to put the ixh blocks of

Figure 16d at the bottom of Nh, the (possible, single) block of

Figure 16e at the top of Nh , and the vertical insertion of Figure 16f

in between. The reason for this last precaution is that a C of Figure

16e must never be in contact with a transmission state of Figure

16d, since this might produce unwanted stimulations. The U-padding

in Figures 16e and 16f is such that the contact in question could

occur only between Figures 16e and 16d, and then only with the

latter to the right of the former. Hence the top line of the Nh (h = 1

,

• • •
,
k) must contain no Figure 16d block immediately to the right

of a Figure 16e block.

In view of all this we have, therefore, these conditions: always

u ^ Vh — h. If some n = 1 (i.e., Vh — h odd, i.e., some Fig. 16e
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block in the top line), and the maximum of vh — h is even, then

u > vh — h for every h. In other words: u ^ u, where

(2')

u = Max (vn — h) + €°,

h=l, • • •,

where e° = 1 if the Max is even but some vh — h is odd,

and e° = 0 otherwise.

It is, of course, simplest to put u = u°.

[This rule is wrong when vk — k = 1, as in P(1010), for a con-

fluent state in the bottom row cannot directly drive a confluent

state above it. This oversight may be corrected in different ways.

We correct it by adding the following restriction to von Neumann's

rule (2'):

If vk — k = 1, then u = 2.

Note that Max (vh — h) = vk — k.

Von Neumann introduced e° because he did not want a Figure 16d

to be immediately to the right of a Figure 16e, since the confluent

state of the latter figure would affect an ordinary transmission state

of the former figure. However, if Figure 16e is in the next to the top

row of the pulser, and Figure 16d occupies this row and the row

below it, this effect does not in fact change the output of the pulser.

We could therefore replace von Neumann's design algorithm by a

new algorithm with this simpler rule for determining u:

If Vk — k = 1, then u = 2

Otherwise, u = vk — k.

We will not make this replacement, however, since we wish to keep

as close to von Neumann's original design as possible.]

This completes the construction. As Figure 16b shows, the area of

this network has the width 2k and the height u + 2. An abbreviated

representation of this network is given in Figure 16g.

Note that the sequence i
l

• • • i
n

,
i.e., the relative delays vh (h =

1, • • •
,
k), is achieved with a certain preliminary absolute delay.

We saw that this was 2k + u under the conditions of Figure 16a. The
insertion of the *L before the first C in Figure 16b raises this to 2k +
u + 1. Thus in the final arrangement, represented by Figure 16g,

a stimulus at a starts the sequence i
l

• • • i
n after a preliminary

[absolute] delay 2k + u + 1 at b. (This means that the first stimulus

or no-stimulus position of that sequence, i
1

, has a delay 2k + u + 2.)

If input a is stimulated several times, the emissions at b take place

concurrently, irrespectively of whether the sequences i
1

• • • i
n that
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are so induced overlap or not. That is, there is no corruption by
interference in this network.

[We will summarize the external characteristics of the pulser

P(i l ~
i
n
). See Figure 16g.

The width of the pulser is 2k, where k is the number of ones in the

characteristic i
l

• • • i
n

. Von Neumann implicitly assumed that

k ^ 2; for k = 0 or k = 1 no organ is needed.

The height of the pulser is u + 2, where u is defined as follows:

vi ,
• • •

,
vk are the v for which f = 1. Von Neumann's rule for u,

as corrected, is

If Vk — k = 1, then u = 2.

Otherwise, u = (vk — k) + e, where

e° = 1 if (v/c — k) is even but some vk — h (h = 1, • • •
, k) is

odd,

e° = 0 otherwise.

Note that k is the number of ones in the characteristic and that

vk is the superscript of the rightmost one; hence ^ — A; is the total

number of zeros in the sequence preceding the rightmost one of the

characteristic.

The delay between the input pulse going into a and the first

output i emerging from b is 2k + u + 2.]

3.2.2 The periodic pulser: structure, dimensions, timing, and the

PP (I) form.

[ Figure 17 shows two pulsers designed according to the algorithm

von Neumann developed next.

The periodic pulser PP (10010001 ) is constructed from a pulser

P (10010001 ) which produces one occurrence of the desired sequence,

a periodic repeater G4--G6 and H^-H6 of period eight, a mechanism

H1-H3 for turning the repeater off, and a pulser P (1111111111)

which produces the signals needed for turning the repeater off.

A "start" stimulus into input a+ at time t will produce 10010001

from an output b' of P (10010001 ) at times t + 29 through t + 36.

The sequence 10010001 is emitted repeatedly from output b until

the repeater is turned off. A "stop" stimulus into input a_ will cause

the top pulser to emit a sequence of 10 ones. These will pass through

the confluent state H2, the special transmission state H3, and into

cell m. The first five pulses will induce the transformation C €e ' —
U —

-> % —> Si —> Sn —> Sin (= Coo), and the last five pulses will

repeat this transformation. No matter what the contents of the

periodic repeater are, they will be wiped out. Note in this connection

that since a sequence of ones is used to turn the repeater off, any

ones entering cell H4 from the left (i.e., from the repeater itself) are
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ineffectual. This is a motive for putting the confluent state at the

bottom of the periphery of the tree of Figure 10.

Since the periodic pulser PP(T) is used very often, von Neumann
elected to simplify the design for this special case. Here he used the

fact that, when Figure 17b is operating, there is a sequence of six

ones in its periodic repeater. Once the transformation of the confluent

state E3 is begun by a pulse from E2 the transformation is completed

by the four ones remaining in the periodic repeater (two ones being

lost when E3 is killed). This periodic pulser does not, however,

work in all contexts. See the editorial discussion at the end of this

subsection.]

The next organ that we construct is the periodic pulser. This organ

has two inputs a+ , a_ , and an output b. Upon a stimulus at a+ it

will begin to emit a prescribed, periodically repeated sequence, say

i
1

• • • in at b. Upon a stimulus at a_ this emission at b will be stopped.

The relation between the stimuli at a+ and a_ and the (starting or

stopping of the) response at b is freely timed; i.e., the two delays

between these are not prescribed at this point (cf., however, the re-

marks at the end of this section) .

This periodic pulser has the symbol PP^' 1
• • • i

n
). The sequence

i
l

• • • i
n

, which can be prescribed at will, is its characteristic; n is its

order.

The required network is successively developed in Figure 18. This

construction and the network that results from it are discussed in

the balance of this section.

The operation of producing the periodically repeated sequence

i
l

• • • in is best decomposed into two suboperations. First, we produce

a single sequence i
l

• • • i
n

;
second, we repeat it periodically. The

first task calls for the pulser P(ix
• • • i

n
) of Section 3.2.1, according

to Figure 16g. We write a\ b' for a, b there. Then our present input

a+ must either feed into or be the input a \ The second task requires

attaching to the output b' an organ that will repeat any period of

length n to the output b.

The simplest periodic repeater is a (closed) cycle of transmission

states. The shortest cycle of this kind has a period 4, as shown in

Figure 18a. Clearly any [such] cycle must have an even period; hence

the general cycle has the period 2f, I = 2, 3, • • • .A cycle of this pe-

riod is shown in Figure 18b.

Our present output b must issue from this repeater. Hence at least

one of its cells must be able to stimulate in two directions (6, as

well as its own successor in the cycle)
;
i.e., it must be a C. The output

b has two possible positions on this C : bi ,
62 .
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This is shown in Figure 18c. The C raises the length of the period

to 2t + 1. This is an odd period. If an even period is wanted, a second

C must be inserted (since the first one cannot be removed). This is

shown in Figure 18d; the period length is here 21 + 2. (Note that

the two C are not immediate neighbors, since a C cannot stimulate

a C.) Both alternatives are jointly represented by Figure 18e, where

(
= o for r = 1.

X
(
= C for r = 2.

Here the period is n = 21 + r, where I = 2, 3, • • •
; r = 1, 2. That

is, we can handle precisely the orders (periods) n = 5, 6, • • •
.

Thus the order n is subject to the condition

(3
r

) n ^ 5.

If the condition (3') is violated, i.e., if the order n is <5, then

the period i
1

• • • i
n may be repeated 0 times. This replaces n by 0n,

and we need only choose 0 so that On fulfills (3'), i.e., On ^ 5.

Let us now return to Figure 18e: The output b must be on the C,

as shown there. The input of the cycle, i.e., the point fed by b',

should be as close as possible to this C, to minimize the delay. It

cannot be on the C itself, because C's remaining free side (which-

ever of 6i ,
6 2 is not used for b) will be needed for another purpose.

We place it therefore immediately before C, at bi or 6 2
'. (The sense

of the cycle has been arranged to maximize this accessibility.)

Now the pulser P^'1
• • • i

n
) of Figure 16g and the cycle of Figure

18e can be placed into actual contact. This is shown in Figure 18f,

where

n = 21 + r;

I = 2,3, ;r - 1,2.

= TO forr = 1.

= C for r = 2.

Figure 18f is drawn as if I < u + 2, but I ^ u + 2 is equally possible.

Note that the cycle is rotated against its previous form (Fig. 18e vs.

Fig. 18f), to have a convenient fit with P^'1
• • • i

n
). In addition the

two organs are separated by a column of IPs, to avoid the possibility

of unwanted stimulations due to contacts between a C of one organ

and a transmission state of the other.

The network of Figure 18f takes care of starting j
1 — j

n
; there

remains the task of providing a network for stopping i
l

• • • i
n

.
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Since we have not introduced any states (or stimuli) for expressing

the negation or inhibition directly, this must now be done by indirect

means. The obvious way to achieve this is by using special stimuli,

i.e., by changing the character of one of the transmission and con-

fluent states that make up the cycle of Figure 18e (which is, after a

rotation, part of Fig. 18f). This means that a_ should control a

stimulus [1] which is directed against one of the exposed sides of the

cycle.
1

Figure 18g shows the organ that will do this. Since it will be

convenient to stimulate this organ (from a_ via a") from above

and to attach it to the upper side of the cycle, Figure 18g shows it

in this position. The output b" of this organ may be attached to any

cell of the cycle. In the position shown (cf. Figs. 18f and 18g) this

can be the \ or the C; in the two other possible positions (on Fig.

18f, i.e., from the right or from below) it could be the C, any lo
?

the Z. (from the right), the L or the X (from below).

With this arrangement, a stimulus [0] from a_
,
arriving at a , would

excite C and then i 1
, and deliver a stimulus [1] at b" with a delay 3

(counted from a ). Hence, with a delay 4, that cell of the cycle which

is in contact with b" will go into the state U and cease to emit.

To this extent the stop has been effected. However, there remains

the question of the further fate of this cell. Indeed, this cell is now a

U; hence the next stimulus [0] traveling through the cycle will con-

vert it into an S e (unless a stimulus [1] does this, by reaching the

cell earlier via b"). After this, stimuli ([0] via the cycle of [1] via

6"), as well as their absence, will transform it further, through the

sensitized states {the S2 with 2 from list (S.l) of Sec. 2.8.1}, to an

(ordinary or special) transmission state or to the confluent state

{T, T' or C, i.e., an S2 with 2 from list (S.2) of Sec. 2.8.1}. Which
of these terminal states will actually be reached depends on the

stimuli circulating in the cycle (plus stimuli possibly delivered via

b ), i.e., on the sequence i
l

• • • i
n

, as well as on the phase of this

occurrence.

In order to have a scheme that will work for all i
1

• • • i
n and

—

what is more important—for all phases in which the stop may be

ordered, it is best to see to it that U gets an adequate and uninter-

rupted sequence of stimuli in any case. Hence it is best to deliver

these from b" . Consequently they will be stimuli [1]. The first one

will convert U into S# , and three more will transform this into

Sin = Coo . These stimuli [1] follow the original stimulus [1], which

produced the U, immediately. Hence a total of five consecutive

1 [As explained in Sec. 2.8.1 above, "[0]" represents an ordinary stimulus,

and "[1]" represents a special stimulus.]
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stimuli [1] at 6" is called for, i.e., five consecutive stimuli [0] at a"

.

However, before we discuss these any further, let us consider the

sequence of transformations that have been induced

:

,
Cycle cell (one of the C, X, 1, lo, I) ->

(4) —
> U —> Se —> Si —> Sn —> Sin — Coo

.

In the end it will be necessary to restore the cycle cell that has

been so transformed to its original condition. It is simplest to use the

sequence (4') itself for this purpose. This sequence ends with a C;

hence it should have begun with a C, too. That is, the cycle cell in

question should be the C in the cycle. This means that the b" of

Figure 18g must be the &i of Figure 18f. Consequently the (ultimate)

output b must be 62 .

Let us now return to the five stimuli [0] at a" . These could be

furnished by a pulser P (11111), whose output b* will then feed a",

while its input a* is fed by a_ . However, one more point needs to

be considered.

The above 5 stimuli paralyze the output of the cycle cell of (4') at

the time when it goes into the state U, also at the 4 successive times

when it goes into the states
, Si , Sn , Sm = Coo ; and finally,

since C responds with a delay 2, there will also be no output from

this cell at the next time. That is, this cell is silent for 6 consecutive

times. If the length n of the period is ^6, then this is sufficient to

silence the cycle for good. However, if n > 6, then this sequence of 5

stimuli [1] at b"
,

i.e., of 5 stimuli [0] at a '

, must be repeated. Let

us repeat it p times. It is clear from the above, that we could insert

a 0 (no stimulus) between every two groups of 11111 (5 stimuli),

but it is simpler to omit this insertion. So we have a sequence 1 • • • 1

of order 5p. This will take the cycle cell p times through the sequence

(4 ), and thereby silence the cycle (i.e., its output b = 62) for 5p + 1

consecutive times. Hence it will silence it for good if n ^ 5p + 1,

i.e., if

(5 ) p ^ —-—

.

0

The simplest choice of p is, of course, as the smallest integer that

satisfies condition (5').

Thus the pulser referred to above (with its output b* feeding a'

and its input a* fed from a_) must be P(l • • • 1) of order 5p. The
entire arrangement is shown in Figure 18h. Starring all quantities

that refer to this pulser, we see that n* = k* = 5p and vh* = h(h =
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1, • • •

, 5p) obtain; hence u*° = 0 by rule (2') of Section 3.2.1, so

that we can choose u* = 0.

The border of LPs around the right and lower sides of the pulser

in Figure 18h serves again to avoid the possibility of unwanted stimu-

lations due to border C's.

Before continuing, we will point out an important special case,

where the introduction of the pulser of Figure 18h can be avoided.

This is the case of the simplest possible period, namely 1. This has

the order n = 1. In this case 1 we proceed as follows.

The order n = 1 violates the condition (3 ); hence we must 0-fold

it, so that On fulfills (3'), i.e., with an 0 ^ 5. (This would suggest

0 = 5, but we postpone the choice.) The new n is 0 (the previous

0n); the cycle in Figure 18f has the period n = 0. Now assume that a

stimulus [1] at bi of Figure 18f (i.e., at b of Fig. 18g; cf. above),

converts the right upper C in this cycle (Fig. 18f) into a U. This

starts the sequence (4 ). To complete this sequence 4 more stimuli

are needed. They are rigidly timed. In our discussion after sequence

(4') we made them [l]'s from b" but [0]\s from the cycle would do

just as well. After the cycle cell has undergone its first transformation

in (4') {i.e., (C —* U)}, the cycle will still deliver n — 2 stimuli

[0] to it. If ft — 2 = 4, i.e., n = 6, then this is precisely what is needed

to complete the sequence (4'). At the same time the cycle will have

been silenced for good, as desired (cf. the discussion leading to condi-

tion (5'), or condition (5') itself with n = 6, p = 1). Hence we
choose ft = 0 = 6. (Note that this fulfills our earlier condition 0 ^
5, but it is not the minimum choice 0 = 5 referred to there!)

With this choice, then, a single stimulus [1] at b" (Fig. 18g) suf-

fices. In this case, therefore, the addition of Figure 18h to Figure 18g

is not needed. However, it is more convenient in this case to have the

input a on the left, rather than on the upper side of the C. Also,

since the pulser P(l • • • 1) of Figure 18h is now omitted, it is con-

venient, for the unification of the notations, to identify a and a*.

This is shown in Figure 18i.

We can now perform the main synthesis by joining the network of

Figure 18f with the network of Figure 18h {the general case:

PP^1
• • . in )) or the network of Figure 18i {the special case: PP (1 )}

.

As noted before, the contact must be made at b" = bi , and the

(ultimate) output is b = 62 . The result is shown in Figures 18 j and

18k, respectively. Note that in the second case n = 6, also h = 6,

vh = h(h = 1, • • •

, 6); hence by formula (2') we have u = 0, so

that we can choose u = 0. Consequently, 2k = 12 and u + 2 = 2,
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us shown in Figure 18k. Note also that though Figure 18j is drawn
as if I < u + 2 and lOp < 2k + 1, either or both of I ^ u + 2 and

lOp ^ 2k + 1 are equally possible.

Figures 18j and 18k contain certain delays, from the stimulation at

a+ , or rather at a, to the start at b, and from the stimulation at a_
,

or rather at a*, to the stop at b. We will determine these.

Consider the first case, i.e., Figure 18 j

.

The path from a to b2 = b in Figure 18j lies entirely in the lower

half of the network, i.e., in the part shown in Figure 18f. Using Figure

18f, we saw at the end of Section 3.2.1 that the stimuli of i
1

• • • %
n

appear at b with an absolute delay of 2k + u + 1 after the stimulus

at a . To this absolute delay must be added the relative delays 1, • • •

,

n, so that the sequence i
1

• • • i
n appears at b

f with the delays 2k +
u + 2, • • •

, 2k + u + n + 1. The delay from b' to b is clearly 4;

hence the first period of i
l

• • • i
n appears at b with the delays 2k +

u + 6, • • •
, 2k + u + n + 5. Thus the start at b (6 = 62 ; cf. Fig.

18 j ) is delayed against the stimulus at a by 2k + u + 6.

The path from a* to b2 = b in Figure 18j consists of the part from

a* to bi = \1\ followed by the part from bi = b" to b2 = b. The part

from a* to b" lies entirely in the upper half of the network, i.e., in

the part shown in Figure 18h. Using Figure 18h, we saw at the end

of Section 3.2.1 that the stimuli 1 • • • 1 (order 5p) appear at b*

with an absolute delay of 2k* + u* + 1 after the stimulus at a. Since

fc* = 5p, u* = 0, this delay is lOp + 1. To this absolute delay must

be added the relative delays 1, • • •

,
dp, so that the sequence 1 • • • 1

appears at b* with the delays lOp + 2, • • •
, 15p + 1. The delay

from b* to b" is clearly 5; hence the sequence 1 ••• 1 appears at

bi — b" with the delays lOp + 7, • • •
,
I5p + 6. Now a stimulus [1]

at bi (Fig. 18f) inhibits the next output from the affected C {cf. the

discussion of sequence (4')} . Hence the output at 62 is stopped with a

total delay of lOp + 8. Thus the stop at b (b = b2 , cf. Fig. 18j) is

delayed against the stimulus at a* by lOp + 8.

Consider now the second case, i.e., Figure 18k.

The lower halves of Figures 18 j and 18k have the same structure;

hence the delay from a to the start at b is given by the formula de-

rived above for the first case. This is 2k + u + 6. Since now k =

6, u = 0 (cf. the discussion of Fig. 18k), this delay is 18.

The delay from a* = a to the stop at b 2 = b in Figure 18k is also

easy to determine. The path from a to bi = b" is also shown in

Figure 18i. Its delay is clearly 3. The delay from a stimulus [1] at
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bi to a stop at 62 (Fig. 18f ) is the same as in the first case, that is, 1.

Thus the stop at b (b = 62 ; cf. Fig. 18k) is delayed against the stimu-

lus at a* (= a"; cf. Fig. 18k) by 4.

We restate: The delay from a stimulus at a to the start at b is

2k + u + 6 in the first (general) case (Fig. 18j) and 18 in the second

(special) case (Fig. 18k). The delay from a stimulus at a* to the stop

at b is lOp + 8 in the first (general) case (Fig. 18j ) and 4 in the second

(special) case (Fig. 18k).

In contrast with the situation at the end of Section 3.2.1, corrup-

tion by interference in this network is a definite possibility. It is easily

verified that this is controlled by the following rules.

Throughout (6'.b)-(6'.d) stimulations at a', a* should be

viewed in a modified chronological ordering, which differs

from the ordinary one by certain systematic (relative)

shifts. All statements in (6'.b)-(6'.d) about simultaneity,

precedence, and ordering of such stimuli must accordingly

be understood in this modified chronology. This chronology

is defined as follows. The ordering of stimulations at a

relatively to each other is unchanged; also the ordering of

stimulations at a* relatively to each other is unchanged.

Stimulations at a are displaced relatively to stimulations

at a* in accordance with the difference between the delays

from a to the start at b, and from a* to the stop at b. In

other words, all these stimulations are ordered chrono-

logically, not by the times of their respective occurrences

(at a or at a*), but by the times at which they take effect

(at b, in the form of a start at b for a , and of a stop at b

for a*).

Multiple stimulations at a', between which no stimu-

lations at a* occur, simply superposes their effects.

One could therefore say, as at the end of Section 3.2.1,

that no corruption by interference takes place in this case.

However, it must be noted that this means that the periodic

emission of the organ (at b) may be changed in this process,

since each new stimulation at a superposes the period

with its own phase on the (possibly already composite)

period produced by the previous stimulations. Finally, this

change is void in the special case, where the period consists

of stimuli only (it is l!), so that additional superpositions

cannot alter it.
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A stimulation at a* which follows upon stimulations at a

{for these cf. rule (6'.b)} stops the period generated by
these. Multiple stimulations at a* have no effect beyond
that one of the first one among them; i.e., the stop caused

< by the first one is maintained by the others, but it would

be equally maintained without them.
2
It should be noted

that if stimulations at a and at a* are simultaneous, the

latter overrides the former; i.e., no emissions at b will

occur.

A stimulation at a which follows upon stimulations at

a takes full effect {in the sense of (6 .b)j only if it nas a

delay ^ 5p + 1 (this is the general case; in the special

< case put p = 1 ) against the former. If it comes earlier,

then those stimuli in the period whose first occurrences

would take place with a delay < 5p + 1 will be perpetually

removed from the period.

To conclude, we will make some adjustments to equalize the delays

from a to the start at b and from a* to the stop at b, thereby eliminating

the complications caused by the special ordering of (6'.a) in (6'.b)-

(6'.d). This will be done by inserting suitable delay paths between

a+ and a on one hand, and between a_ and a* on the other. We will

distinguish three sub-cases, as follows.

First, assume the case of Figure 18j and lOp < 2k + 1. Define zx

by lOp + z\ = 2k + 1, so that Z\ = 1, 2, • • • . Attach the network

shown in Figure 19a to the left side of Figure 18j. The delay from a+

to a' is 3; hence the delay from a+ to the start at b is 3 + (2k +
^ + 6) = 2k + u + 9. The delay from a_ to a* is u + zx ; hence

the delay from a_ to the stop at 6 is (u + zx ) + (lOp + 8) = (lOp +
zi) + (u + 8) = (2k + 1) + (u + 8) = 2k + u + 9.

Thus both delays are 2k + u + 9, and Figures 18j and 19a put

together assume the aspect of Figure 19c. This figure is drawn as if

I < u + 2, but I ^ u + 2 is equally possible.

Second, assume the case of Figure 18j and lOp ^ 2k + 1. Define

z2 by (2k + 1) + z2 = lOp, so that z2 = 0, 1, 2, • • • . Attach the net-

work shown in Figure 19b to the left side of Figure 18j. The delay

from a+ to a is 3 + z2 ; hence the delay from a+ to the start at b is

(3 + z2 ) + (2k + u + 6) = ((2k + 1) + z2 ) + (u + 8) = lOp +
u + 8. The delay from a_ to a* is u\ hence the delay from a_ to the

stop at b is u + (lOp + 8) = 10p + u + 8.

Thus both delays are lOp + u + 8, and Figures 18j and 19b put

2 [There is an error here, which we will discuss at the end of the subsection.]

(6'.c)

(6'.d)
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together assume the aspect of Figure 19d. This figure is drawn as if

( < u + 2, but I ^ u + 2 is equally possible.

Before going on to the third case, note that the common delay in

the first case (where lOp < 2k + 1) is 2k + u + 9, while in the

second case (where 10p ^ 2k + 1) it is lOp + u + 8. Both cases

are covered by the expression M + u + 8, where

(?') Af = Max (10p, 2fc + 1).

Also, Figures 19c and 19d have in every way the same outward

appearance, except that the first has the width 2k + 4, while the

second has the width lOp + 3. Again both cases are covered by one

expression, namely by M + 3. Hence Figure 19e represents both

Figures 19c and 19d. Figure 19e is drawn as if I < u + 2, but I ^
u + 2 is equally possible.

Third, assume the case of Figure 18k. Attach the structure shown

in Figure 19f to the left side of Figure 18k. Also, identify a with a+ .

The delay from a+ to the start at b is then the same as that one from

a, that is, 18. The delay from a_ to a* is 14; hence the delay from a_

to the stop at b is 14 + 4 = 18.

Thus both delays are 18, and Figures 18k and 19f put together

assume the aspect of Figure 19g.

Figures 19d and 19g are the desired network in the case of a general

PP^1
• • • in ) and of the special PP(T) {represented with n = 6, i.e.,

as PP (111111)}, respectively. It is worthwhile to introduce a joint

abbreviated representation for these. In the case of Figure 19d we
bring it to the uniform height of N + 3, where

(8') N = Max (u + 2,

by filling in U's as needed. Figure 19g need not be changed at all. The
result is shown in Figure 19h. For the general case of PP^'1

• • • in ):

K = M + 3, L = N + 3, Li = 2, L2 = 4, Lz = L - 4.

For the special case of PP (I)

:

K = 15, L = 4, U = 0, L2 = 3, L3 = 1.

The delays from a+ to the start at b and from a_ to the stop at b

are the same. This common delay is M + u + 8 in the general case

and 18 in the special case. We can now reformulate the rules (6.a)-

(6.d), with a+ in place of a and a_ in place of a*, and with the common
delay for starting and stopping. This eliminates, as observed earlier,

the need for the special ordering of rule (6'.a). We obtain accordingly

this.
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The rules that govern possible corruption by interference are now
modified from their form in (6'.a)-(6'.d) in this way:

The special chronology for stimulations at a and a*, as de-

fined in (6'.a), is now replaced by the ordinary chronology

of the occurrence of stimulations at a+ and a_ . That is, all

(9')
\
comparisons must now be made according to the times at

which stimulations occur at a+ and a_ . With this modi-

fication (and replacing a by a+ and a* by aJ) the rules of

v
(6

/

.b)-(()
/

.d) remain valid.

[As noted above, there is an error in von Neumann's rule (6'.c)

concerning the timing of a periodic pulser. There is also an important

case which von Neumann didn't discuss, namely, the case in which a

"stop" stimulus precedes a "start" stimulus.

Let us consider first the timing of von Neumann's periodic pulsers,

using Figure 17 as an example. For the periodic pulser PP (10010001)

we have the following phasing. A "start" stimulus into input a+ at

time 2 will cause the sequence 10010001 to enter cell H4 from cell G4
at times 2 + 31 through 2 + 38. A "stop" stimulus into input a_ at

time 2 will cause the sequence 1111111111 to enter cell H4 from cell

H3 at times t + 32 through t + 41. In this case nothing is emitted

from the output b, since the killing signal from H3 dominates the

transmission signal from G4- If the "stop" stimulus comes one moment
later (at time 2 + 1), the sequence 1111111111 enters cell H4 from

cell H3 at times 2 + 33 through 2 + 42. In this case cell H4 is in

state Coo at time 2 + 31, in state Coi at time 2 + 32, in state Cio at

time 2 + 33 (and a pulse is emitted from b at time 2 + 33), and in

state U at time 2 + 34.

Consider next the phasing of von Neumann's special periodic

pulser PP(T). A "start" stimulus into input a+ at time 2 produces

the sequence 111111 into cell E3 from cell D3 at times 2 + 16 through

t + 21. A "stop" stimulus into input a_ at time t enters cell E3 from

cell E2 at time 2+17. Consequently, nothing is emitted from b if

the "start" and "stop" stimuli are simultaneous. If the "stop"

stimulus comes one moment later, then one pulse is emitted from 6,

as was the case with the periodic pulser PP (10010001).

It should be noted that we have measured the delay from the input

a+ and a_ up to (but not including) the cell containing the confluent

state C which drives the output b. Von Neumann measured these

delays through this cell to the output b. For a signal from the "stop"

input a_ the delay through this final cell is only 1 unit, since killing

takes only 1 unit of time. Hence the delay from both a+ and a_ to
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the stop at b is 33 for PP (10010001) and 18 for von Neumann's

PP(1). See Table I.

Thus the phasing for all periodic pulsers PP(^ • • • i
n
) constructed

by von Neumann's algorithm is as follows. Assume the periodic

pulser is as designed and is quiescent. If the "start" stimulus into

input a+ and the "stop" stimulus into input a_ are simultaneous,

nothing is emitted from output b, and the periodic pulser is left in

its initial state. If the "stop" stimulus follows the "start" stimulus

by T(T > 0) units of time, the sequence i
l

• • • in is emitted v times

and then an initial sequent of it of length \x is emitted, where T =
n*> + ju, ju < n, and either v or /x may be zero. This phasing is as von

Neumann intended and is in accord with his rules. But von Neumann
did not consider all the cases in which the "stop" stimulus precedes

the start stimulus (i.e., T < 0). Apparently, he planned to use each

periodic pulser in such a way that there would be a one to one corre-

spondence of "start" to "stop" stimuli, with the m'th "stop" stimulus

coming no earlier than the m'th "start" stimulus, with the m'th

"stop" stimulus preceding the (m + l)st "start" stimulus by a

sufficient length of time for the periodic repeater to be cleared pro-

perly. But he did not state this intention, and in his subsequent use

of periodic pulsers he did not always conform to it.

Consider the effect of feeding the sequence 101 into the "stop"

input a_ of PP (10010001). This sequence will cause the upper pulser

P (1111111111) to emit 12 (rather than 10) pulses and (depending

on the phasing of the "start" input a+) may leave cell H4 in an

undesired state. For some conditions of the phasing of 101 into a_

Table I

External characteristics of periodic pulsers

General Case Special Case

In terms of
parameters

Example of

PP(10010001)

Von Neu-
mann's

PP(1)

Alternate

PP(T)

Width K M + 3 23 15 13

Height L N + 3 10 4 4

Number of cells below an input or

output

Input a+ 2 2 0 1

Input a 4 4 3 3

Output b L - 4 6 1 1

Delay from input a+ to b. Also, de-

lay from input a., to stop at 6.. M + u + 8 33 18 19
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and 1 into a+ , the cell H5 may be killed to U. This difficulty may
be solved by the following rule of usage. The "stop" input a_ of a

"general case" periodic pulser PP^ 1
• • • in ) is never to be stimulated

twice in any time span of length n. Actually, all of von Neumann's

later uses of "general case" periodic pulsers conform to this rule.

There is a more serious problem in von Neumann's "special case"

periodic pulser PP(T). A stimulus into the "stop" input a_ changes

cell E3 into U, and then the four pulses in the pulser P (111111 ) or the

periodic repeater (or both) operate by the direct process to leave E3
in the confluent state C. But suppose a "stop" stimulus precedes a

"start" stimulus. Then cell E3 will not be left in the correct state!

This fact causes no trouble when von Neumann's PP(1) is used in

the triple-return counter (Sec. 3.4 below), but it does cause incorrect

operation of his control organ CO as it is used in the read-write-erase-

control RWEC (Sec. 4.3.4 below). We could modify some of the

contextual circuitry of the CO, but it is better to use a PP(1) in the

CO which is not contaminated if it is turned off before being turned

on.

This alternate PP(I) is shown in Figure 20. It uses two modified

pulsers P(lllll), one above and one below. A "start" stimulus into

input a+ at time t causes the sequence 11111 to enter cell G3 from

cell G4 at times t + 17 through t + 21. If cell G3 is in the confluent

state C this sequence will emerge from the output b at times t + 19

through t + 23, so the delay from input a+ to b is 19 units of time. A
"stop" stimulus into input a_ at time t causes the sequence 11111

to enter cell G3 from cell G2 at times t + 18 through t + 22. Since

killing takes only 1 unit of time, the delay from input a to the stop

at b is 19 units, which is the way von Neumann counted it. See Table I.

Note further that if the start input a+ is stimulated from 1 to 4

units of time after the stop input a_ is stimulated, from 1 to 4 pulses

will be left in the repeater.Hence we stipulate the following rule of

usage for the alternate PP (1) of Figure 20: the stop input a_ is never

to be stimulated twice within 5 units of time, and the start input

a+ is never to be stimulated from 1 to 4 units of time after the stop

input is stimulated. The structure of the read-write-erase-control

unit RWEC is such that this rule is always satisfied. When operated

in an environment which conforms to this rule, the alternate PP(T)

functions as a "flip-flop." It is turned on at a+ , off at a_ , and while

it is on it emits a continuous sequence of stimuli from b which may
be used to operate a gate (confluent state).

We will now summarize the external characteristics of periodic

pulsers. Von Neumann's special case PP(1) is shown in Figure 17b.
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Our alternate special case PP(T) is shown in Figure 20. The external

characteristics of both of these PP (1 ) are given in Table I.

The general case PP (i
l • «

• i
n
), with n ^ 5, is shown in Figure 19h.

If n < 5 and the special case does not apply, the characteristic is

iterated until n ^ 5; for example, if PP (101) is asked for, PP (101101)

is constructed. The general case PP^1 ••• i
n
) contains the pulser

P (i
l

- • • in ), for which u and k are defined at the end of Section 3.2.1.

The following string of definitions leads to the parameters K (width)

and L (height) of PP(i* ... *»).

I = integer part of (n — l)/2

N = Maximum of u + 2 and I

L = N + 3

p = The smallest integer such that 5p ^ n — 1

M = Maximum of lOp and 2k + 1

K = M + 3.

Further information is given in Table I.]

3.3 The Decoding Organ: Structure, Dimensions, and Timing

[Figure 21 shows the decoding organ D (10010001). This decoding

organ has characteristic 10010001 and order 8. All sequences of length

8 can be divided into two classes : those which are bitwise implied by

(contain all the stimuli of) the characteristic 10010001 (e.g., 10010001

and 11010011), and those which are not (e.g., 10000001 and

10010010). If a sequence of the former class is fed into input a, a

single stimulus will come from output b after a suitable delay, while a

sequence of the latter class produces no output.

A decoding organ is to be distinguished from a "recognizing" device

which produces an output for some particular sequence (e.g.,

10010001) and no other. Such devices are discussed in Section 3.5.

The decoder D (10010001) works in this manner. Suppose the se-

quence iHHHHHHH8
, with i

1 = 1, = 1, and i = 1, enters input a at

times t through t + 7; the three stimuli i
1

,
i, and i enter with relative

delays 0, 3, and 7, respectively. Paths B and D meet at the confluent

state Dl with delays of 21 and 18, respectively; hence i
l

and i will

produce an output from cell Dl at time 23. This output will arrive at

cell Fl at time 24, coincident with the arrival of i via path F, thereby

producing an output from b at time 26. Note that since there are

three ones in the characteristic 10010001, three paths (B, D, and F)

are needed in the decoder.

The design of a decoding organ is very similar to that of a pulser

(Sec. 3.2.1). Indeed, a pulser is in fact a coder. For the decoding
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organ, however, confluent states are needed along the top row to

detect coincidence. When confluent states are needed to introduce

relative delays between paths of odd amounts (e.g., as in cell B3
of Fig. 21), then these confluent states must be isolated from those in

the top row by means of T0i € states (as in row 2 of Fig. 21).]

Our third construction is the decoding organ. This organ has an

input a and an output b. The ideal form would be one which, upon

the arrival of a prescribed sequence, say i
1

• • • i
n

, at a, and only then,

will emit a single stimulus at b. However, for our specific applications

of this organ a simpler requirement will do, and this is the one that

we are going to use. It is as follows. Let a sequence, e.g., i
l

• • • i
n

,

be prescribed. Upon arrival of any sequence j
l

• • • j
n at a, which

contains all the stimuli of i
1

• • • in (i.e., such that i = 1 implies

f = 1), and only then, it will emit a single stimulus at b.

The relation between the actuating sequence j
l

• • • j
n at a and the

response at 6 is freely timed; i.e., the delay between these is not pre-

scribed at this point (cf., however, the remarks at the end of this

section).

This decoding organ has the symbol D^'1
• • • i

n
). The sequence

t
i ... {n

y
which can be prescribed at will, is its characteristic, and n is

its order.

The required network is successively developed in Figure 22. This

construction and the network that results from it are discussed in the

balance of this section. They have a great deal in common with those

for the pulser P(ix
• • • i

n
), as discussed in Section 3.2.1.

Let vi ,
• • •

, Vk be the v for which i = 1, i.e., the positions of the

stimuli in the sequence i
l

• • • in . (At this occasion, unlike in Sec.

3.2.1, we are not interested in their monotone ordering.) Write

/10/x f n — vh = 2nh + rh\UU ;

\ where ^ = 0, 1, 2, • • •
; n = 0, 1.

{Note the difference between equation (10') and equation (l')!}

The input stimuli at a must be compared, to see whether k stimuli

with the relative delays vi , • • •
,

vk are present there. This can be

done by multiplexing each stimulus that arrives at a to k distinct

stimuli, numbers h = 1, • • •
,
k, arriving at some comparison point

b' with the relative delays n — vh (h = 1, • • •
,
fc), respectively. Then

the simultaneous arrival of k stimuli at b' is equivalent to the arrival

of k distinct stimuli, numbers h = 1, • • •

,
k, arriving at a with the

relative delays vi ,
• • •

, vu .

Hence we need k paths, numbers h = 1, • • •
,
k, from a to b , which

have the relative delays n — vh (h = 1, • • •

,
fc), respectively, with
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respect to each other. However, we cannot sense a /c-fold coincidence

by a single act, at a single point, if k > 3. (k = 3 is the maximum that

a single C can handle; cf. Sec. 2.3.2.) It is therefore best to bring

these k paths together pairwise. First, paths 1 and 2 merge at a

comparison point b2 (it is better to begin with b2 rather than with

£>/; cf. below), so that joint path 2 continues from b2 then paths 2'

and 3 merge at a comparison point 63 , so that joint path 3' continues

from bz\ then paths 3' and 4 merge at a comparison point &/, so

that joint path 4' continues from &/; • • •
; and finally paths (k —

1)' and k merge at bk ', so that joint path k! continues from bk
' directly

to the output b. In this successive way 2-fold coincidences at b2\ • • •

,

bk replace the single fc-fold coincidence at b'. A C can, of course,

handle a 2-fold coincidence without difficulty (cf. Sec. 2.3.2).

This procedure clearly calls for a network of the type developed in

Figures 16a and 16b. Consider first Figure 16a. Here the stimulus

entering at a reaches b over k different paths, and while the delays

that are desired for each one of these paths are not yet properly

adjusted, this can be attended to afterwards, with the means of

Figure 16b, i.e., with the networks N of Figure 16c, as detailed in

Figures 16d-16f. We discuss first another imperfection that Figure

16a presents in the present situation. This is the following.

In Figure 16a the k paths that are produced by the C on the base

line are directly merged by those o on the top line that lie above the

C (on the base line) numbered 2, 3, • • •
, k. These mergers are effected

by o cells, i.e., without any coincidence requirements. This is confor-

mal to the purposes of Figure 16a in Section 3.2.1 but not to our

present ones. The k — 1 cells o> in question, where these mergers

occur, are obviously the comparison points b2 , bz, • • •
, referred

to above. Hence these must be able to sense coincidences; i.e., they

should be C, not jdi. For reasons of symmetry we also replace the

o on the top line above the C (on the base line) numbered 1, by C,

and call it &/. This new arrangement is shown in Figure 22a.

A stimulus arriving at a has k paths available to reach 6. On path

h (h = 1, - "
,
k) it goes horizontally from a to the (base line) C

numbered h; then it turns vertically up, ascends to the top line (to

the C at bh) and continues there horizontally to 6. (Up to this point,

and not further, we are following the pattern of Fig. 16a.) These are

(2h - 1) + u + (2(fc - h) + 1) = 2k + u steps, but since h +
(fc — h + 1) = k + 1 of them are C's, the entire delay involved is

8k + u + 1. That is, the delay is the same on all paths.

In view of this we must increase the delay on path number h by

n — vh = 2/x/ + rh'. {Cf. equation (10').} This can be achieved
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exactly as was its analog in Section 3.2.1: each vertical branch is

replaced by a suitable delay network, say branch number h by a

network Nh. This Nh is like the Nh of Figure 16e; that is, it is made
up of the parts shown in Figures 16d-16f, except that now

, Th are

replaced by /x/> n . Thus Figure 22b results, which is related to Figure

22a in the same way that Figure 16b is related to Figure 16a. The
height u obtains by repetition of the considerations of Section 3.2.1

that led up to condition (2 ). {Now nh ,
rh are replaced by /x/, r/,

i.e., the vh — h of (l') are replaced by the n — vh oi equation (10').}

We obtain the condition u ^ u° (in analogy to condition (2'), with

the modifications mentioned above), where

(11')

u° = Max {n — Vh) + e'°,

where e'° = 1 if the Max is even but some n — Vh is odd,

and e° = 0 otherwise.

/o
It is, of course, simplest to put u = u

[Von Neumann overlooked the need for an extra row of cells

between row u of Figure 22a and the top row in case row u contains a

confluent state. Otherwise, the confluent state of row u will be adja-

cent to a confluent state in the top row, creating an open path, since a

confluent state cannot directly drive another confluent state. Row 2

of Figure 21 is this extra row which von Neumann overlooked; if

row 2 were deleted, the confluent states of cells Bl and B3 would be

adjacent.

This oversight may be remedied without changing von Neumann's
parameters as follows. Let 1 ^ v± < vi < • • • < rk < n. Then there

are two cases, according to whether an extra confluent state occurs

in the leftmost path (i.e., the path for vi) or another path. If an extra

confluent state occurs in the leftmost path, replace it and the con-

fluent state above it (i.e., in the top row) by a block of four connected

ordinary transmission states. Thus in Figure 21, put a block of four

ordinary transmission states in cells Al, Bl, A3 and B3 and delete

row 2. If an extra confluent state occurs in a path other than the

leftmost path, place it one cell lower.]

This completes the construction. As Figure 22b shows, the area of

this network has the width 2k and the height u + 2. An abbreviated

representation of this network is given in Figure 22c.

The delay from a to b through Figure 22a was 3k + u + 1 on each

path. Through Figure 22b it is therefore 1 + (3k + u + 1) + (n —
Vh) on path number h. The first term, 1, is due to the insertion of the

o before the first C in Figure 22a. Hence stimulus number vh (with
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i
n = 1 ) in the sequence i

1
• • • in at a reaches b with a delay (3k +

u + 2) + n. This is counted from the time immediately before the

start of the sequence i
l

• • • i
n

; hence the delay counted exactly from

its start is 3k + u + n + 1. This is the same for all h = 1, • • •
,
k,

as it should be. Hence the stimulus indicating this A;-fold coincidence

(i.e., the presence of a sequence j
l

• • • j
n

,
containing i

1
• • • in , at a;

cf. above) will appear at b with a delay 3k + u + n + 1. Thus,

in the final arrangement, represented by Figure 22c, there is from the

arrival of a sequence/ • • • j
n (containing i

1
• • • i

n
) a delay 3k + u +

n + 1 to the response at b.

It is easily seen that in this network no corruption by interference

occurs. That is, whatever stimuli may arrive at a, whenever there

occurs a sequence j
l

• • • j
n among them that contains i

l
• • • in , there

will be a response stimulus at b, with a delay 3k + u + n from the

beginning of that sequence.

[ We will summarize the external characteristics of the decoding

organ D^'1
• - • i

n
). See Figure 22c.

The width of the pulser is 2k, where k is the number of l's in the

characteristic i
l

• • • i
n

. Von Neumann implicitly assumed that k ^
2; for k = 0 and k = 1 no organ is needed.

The height of the decoding organ is u + 2, where u is defined as

follows. The vi ,
• • •

,
vk are the v for which i = 1. Note that n is the

length of the characteristic and the vx is the superscript of the first

1 ; hence n — vi is the number of bits in the characteristic which are

to the right of the first 1. Since all vk (h = 1, • • •
, k) are positive,

Max (n — vh ) = n — v\. Von Neumann's rule for u then becomes

u = (n — vi) + where

e'° = 1 if (n — vi) is even but some n — vh (h 2, • • •
,
k) is odd,

e'° = 0 otherwise.

The delay between the input signal i
l
entering input a and the out-

put pulse leaving b is 3k + u + n + 1.]

3.4 The Triple-return Counter

[ In the preceding sections von Neumann gave algorithms for de-

signing an arbitrary pulser P^1
• • • i

n
), an arbitrary periodic pulser

PP^' 1
• • • i

n
), and an arbitrary decoder Q(# • • • in ). He next

designed a specific organ, the triple-return counter The completed

organ is shown in Figure 23, though not to scale. The periodic pulsers

PP(T) are those of Figure 17, with width 15 and height 4; hence the

actual width of$ is 24 and its actual height is 26. The long lines with
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arrows in Figure 23 symbolize sequences of ordinary transmission

states being used for transmission only, not for disjunction.

Von Neumann needed the triple-return counter for a specific pur-

pose, that of sending a pulse around a connecting loop (Ci or C2 ) of

the external tape L three times; see Figure 37. Suppose that the

secondary output d of <£> is connected to the input t>2 of connecting

loop C2 and that the output w2 of loop C2 is connected to the second-

ary input c of <£. A pulse into the primary input a of $ will go around

loop C2 three times and will then be emitted from the primary output

6 of

We assume as a rule of usage that once input a of $ is stimulated, it

will not be stimulated again until a stimulus has been emitted from

output b of Under this assumption, the triple-return counter <£

works like this. A start stimulus into a goes via a coding and decoding

network to a+*, where it starts the first periodic pulser, and also to

output d, where it is relayed to the input of C2 . After a delay, the

output 6
1

of the first periodic pulser will send stimuli along row 14 to

impinge on confluent cell F14, which functions as a gate. When the

output pulse from C2 enters <£ at c, it travels along row 20 and into

column D, stimulating the three gates F14, F8, and F2. Only the

first of these gates (F14) is open; the pulse passes through this gate,

turns the first periodic pulser off, turns the second periodic pulser

on, and passes along row 13 and column J to the secondary output d.

The next pulse entering secondary input c from C2 turns off the

second pulser, turns on the third pulser, and goes from secondary

output d back to C2 . When this pulse returns from C2 , it turns off

the third pulser and passes out the primary output b. This completes

the operation of <f>.

Note that the path from primary input a to cell F18 crosses the

path from secondary input c to cell D14> Actually, no harm results

from the primary input stimulus going to cell D14 and thence to

gates F14, F8, and F2, since these gates are initially closed. But if

the pulses from c to D14 entered cell F18, a malfunction would result.

This is a special case of the general problem of wire-crossing. The
general problem is solved by means of the coded channel of Section

3.6 below. The special problem is solved in <£ by means of the coder

B17, B18, C17, C18, which produces 101 when stimulated, and the

decoder D18, D19, E18, E19
9
F18, F19, which emits a 1 to F17 and

G18 when it is stimulated by 101, but not when it is stimulated by 1.

The design principle of the triple-return counter can easily be modi-

fied and generalized to give a counter which will count m pulses; that

is, will emit every m J

th pulse it receives.]
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The three organs that we constructed in Sections 3.2 and 3.3 were

basic entities of rather general significance. The next ones will be

much more special; they correspond to specific needs that will arise

in the course of the first major, composite construction that we must

undertake. Their names, which refer to very special functions, also

express this fact.

The first organ in this series is the triple-return counter. This organ

has two inputs a, c and two outputs 6, d; a, b are the primary input-

output pair and c, d are the secondary input-output pair.

In order to describe its functioning, it is necessary to assume that

its secondary output d and its secondary input c are attached to the

input c* and the output d*, respectively, of an (arbitrarily given)

other organ. This other organ is the responding organ, and we will,

for the time being, give it the symbol 12. Having been thus attached

to 12, the triple-return organ now has only its primary input-output

pair a, b free. Its desired functioning is as follows.

Upon stimulation at a it responds at d and thereby stimulates at

c*. Assume that 12 responds, after a suitable delay, at rf*, stimulating

c. This causes a second response at d, and hence a stimulation of 12

at c*. Assume that 12 responds for the second time, after a suitable de-

lay, at d*, stimulating at c. This causes a third response at rf, and

hence a stimulation of 12 at c*. Assume that 12 responds at d* for the

third time, after a suitable delay, stimulating at c. This causes a

response at b and terminates the process.

The relation between the original actuation at a and the ultimate

response at b is freely timed; i.e., the delay between these is not

prescribed at this point. Note that the total process from a to b has

three phases, namely the three passages from d through c* and d*

(i.e., through 12) to c, whose delays depend in any event on the re-

sponding organ 12, and not on the organ to be constructed now. How-
ever, the other phases of the total process from a to b (i.e., those from

a to d, twice from c to d, and finally from c to b) depend solely on the

organ to be constructed now. It is to these that the above observation

about free timing, i.e., the absence of prescriptions of specific delay

lengths, applies (cf., however, the remarks at the end of this sec-

tion).

The triple-return counter has the symbol <i>.

The required network is successively developed in Figure 24. This

construction and the network that results from it are discussed in the

balance of this section.

We require that the stimulation should pass precisely three times

from c* to d* (i.e., through 12). Or, which is more to the point, we
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require that when a stimulus arrives at c (from d* of 12) the first

two times, the consequences (in <i>) should be different from those

that take place the third time. Hence <£ needs a memory that can

distinguish the first two occasions from the third one, i.e., keep a

count up to three.

With ourpresent means this is best achieved by three periodic

pulsers PP(T), each of which is turned on (started) at the beginning

of the count-period that it represents, and turned off (stopped) at

its end. During that count-period, the corresponding PP(T) effec-

tively indicates the presence of the count-period by the (continuous)

availability of its output stimulus. This stimulus must then be used

to achieve the characteristic operations of the count-period in ques-

tion. These are the following.

First count-period: A stimulus arriving at c is routed to d, and

after this the PP(1) of the first period is turned off and that of the

second period is turned on.

Second count-period: A stimulus arriving at c is routed to d, and

after this the PP(1) of the second period is turned off and that of

the third period is turned on.

Third count-period: A stimulus arriving at c is routed to 6, and

after this the PP (T) of the third period is turned off.

The initial stimulus at a must, of course, be routed to c, and it

must also turn on the PP(1) of the first period.

The obvious way in which the continuous emissions of a PP(T)

can be used to induce the desired consequences that are characteristic

of its count-period (cf. above), with the help of the stimulus at d

that actuates the period in question, is this. Use a confluent state C
as a coincidence organ by giving it the route from the output of the

PP(T) referred to above and the route from c as inputs (whose

coincident stimulations it is to sense). Then use this C to initiate

the characteristic responses enumerated above. [See cells F14, F8,

and F2 of Figure 23. Von Neumann thinks of the stimulus at d (i.e.,

c*) as actuating a given count-period. This stimulus will pass through

Q, and enter <I> at c (i.e., d*).]

All these arrangements are shown in Figure 24a. Note that in this

figure the inputs and the output of the PP are designated by d+ , d- and

b (instead of a+ , a- and 6, as in Figs. 19g and 19h). The upper and the

lower edges of the PP are protected by U's, to prevent unwanted

stimulations by C's across these boundaries. It is convenient not to

extend this protection to the left lower corner of each PP (to make
room for a transmission channel there); that this is permissible is
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not indicated by Figure 19h, but it is by Figure 19g. [See also Figures

16b and 18k.]

In Figures 24a and 24b the following simplifications are used: A
straight line of states 0. is designated by a single arrow, and similarly

for the three other directions. A connected area of states U is cross-

hatched. The PP (T) are not shown in their true size (which is 4 X 15;

cf. Fig. 19g); the area of the network of Figure 24a is therefore

correspondingly contracted horizontally and vertically.

Figure 24a does not show how the transmission channels of the

secondary input-output pair c, d and of the primary input a reach

their proper endings at c = d*, d = c* and a, respectively. (In the

figure c = d*, d = c* are shown; a is not shown but should be thought

of as lying towards the lower left corner.) In the figure the transmis-

sion channels in question end at Ci or c2 , at d', and at a/ or a2
',

respectively. The primary output b is shown reaching its proper

ending. There is no difficulty in connecting d with d, but there is a

serious topological difficulty in connecting Ci or c2 with c and at the

same time a/ or a* with a (without disturbing the connections of b

and of d in the process) : It is clear that these paths must cross. Note

that it is not a rigid requirement that a, b, c, d be at the positions

indicated in the figure (regarding a, cf. the above remark); i.e.,

a, b, c, d could be moved around somewhat. However, it is necessary

that a, b be on the left edge of the network and that c, d be on its

right edge (cf. later [Fig. 39]), and this implies the topological diffi-

culty referred to above, i.e., the necessity of crossing paths. We may
therefore just as well leave a, 6, c, d in the positions indicated above.

We must solve the problem of how to cross the channel from c% or

c2
f

to c and that one from a/ or a2
' to a without corruption of informa-

tion by interference, i.e., without the information intended for one

channel getting into the other one, and thereby causing malfunctions

in the network.

The problem of crossing lines (which is a peculiarity of the 2-

dimensional case; cf. Chapter 1 and also later) will be solved in a

general form by the construction of a specific organ for this purpose

later on [Sec. 3.6]. However, its present occurrence is particularly

simple, and it does therefore not seem worthwhile to appeal to the

general procedure referred to, but it is preferable to solve it ad hoc.

The main simplification present is that, while it is necessary to

keep signals in the channel from c to Ci or c2
' from getting into the

channel from a to a/ or a2
', the reverse is not necessary. Indeed, the

first type of cross-talk between these channels would cause a pulse

to cycle indefinitely between the responding organ ft and the triple-
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return counter <i>, thereby completely vitiating the operation. The
second type of cross-talk, on the other hand, merely injects the

original stimulus (from a) into the Ci -c2 channel, thereby furnishing

a stimulus to each one of the three coincidence-sensing C's (these

are 2 squares to the right of the d channel at the left edge of the

figure). An examination of the delays (cf. below) will show that at

this time none of the PP(l) is turned on yet, and therefore none of

the C's in question receives the other stimulus required for a coinci-

dence. Hence, the misdirected a-stimuli of this class are harmless.

Thus, we must only prevent c-stimuli from getting into the a/-a2

'

channel. This can be achieved by the same coding-and-decoding

trick that we will use subsequently for the general purpose referred

to above [see Sec. 3.6]. That is, we will use a pulser to replace an

a-stimulus by a (coded) sequence of stimuli, and protect ai'-a2
' by

placing a decoder in front of it which will respond only to this sequence

of stimuli and not to a single stimulus. In this way an a-stimulus, in

its expanded (coded) form, will be able to get through to ai'-a2
';

while a c-stimulus, which remains single, will not be able to reach

ai'-a/. In addition, it is not worthwhile to appeal at this point to our

previous constructions of pulsers and decoders, but it is simplest to

make up the necessary primitive organs specifically for the present

purpose.

The coding of an a-stimulus need only be its replacement by two

stimuli, and it is somewhat more convenient to choose these as not

immediately consecutive. That is, we are using 101 rather than IT.

This makes the coding, as well as the decoding operation quite simple.

The arrangements that achieve this are shown in Figure 24b. (Note

that Fig. 24b extends the lower end of Fig. 24a. Inspection of the

two figures shows clearly what their common elements are, i.e., in

what manner they must be superposed.) The position of a can be at

ai or a2 . This stimulates the leftmost C which sends stimuli over

two paths with a differential delay of 2 to its right-hand neighbor jo

.

Thus a sequence 101 arrives here, if the stimulation came from ai~a2 .

Note that this o is also fed by a to immediately under it, which

represents the channel coming from c. Through this channel only a

single 1 will come in. Thus, the coding of an ai-a2 stimulus (and the

non-coding of a c-stimulus) has already taken place at this o (imme-

diately to the right of the leftmost C). This stimulates the second C.

From here this stimulation travels, as it should, unimpeded to c2
'

(whether coded or not). On the other hand, two paths, with the

differential delay 2, go from this (the second from the left) C to the

next (the third from the left) C, which now acts as a coincidence
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organ. That is, this last C will respond only if the previous C had

accepted two stimuli with the compensating delay 2, i.e., a sequence

101. In other words, only a stimulus coming from ai-a2 (and not

one coming from c) can effect (by these indirect means) a stimulation

of this last C. This C coincides with that one in the lower left corner

of Figure 24a, i.e., with the one adjacent to the a\-(U entries. Thus,

the transmission from ai-a2 together with the exclusion from c, to

a/-a2
', has been achieved, as desired.

Note that a/ and a/ have both been utilized (their C needed two

accesses; cf. above), a may be at a\ or a2 . We use ai , since we want a

from the left. Of c/ and c2
' we have utilized c/, and Ci need not be

considered further. Figures 24a and 24b having been fitted together,

it is indicated to make a further addition to the left edge. Indeed, it

is desirable to straighten it, and to protect its C's (which could cause

unwanted stimulations in adjacent transmission states) by a border

of IPs. We add accordingly a border of IPs which fits the left edge

of Figures 24a and 24b and contains the necessary channels from the

new position of a to the old one, and from the new position of b to

the old one. This is shown in Figure 24c, the position relatively to

Figure 24b being indicated by the dashed line there. Finally, we fill

the strip around the right upper corner of Figure 24a, marked with a

dashed line, with IPs, to complete the rectangular shape.

This completes the construction. The areas PP(T) in Figure 24a

have the width 15 and the height 4 according to Figure 19g. Hence

the area of the network of Figure 24a spans a rectangle of width 21

and of height 26. This has the consequence that the (rectangular)

area of the entire network (resulting from Figs. 24a-c) has the width

24 and the height 26. An abbreviated representation of this network

is given in Figure 24d. Figures 24c and 24d are further contracted in

comparison with Figures 24a and 24b.

The delay from a to ai is clearly 1 (cf. Fig. 24c); the delay from

ai (through three C's, and paying attention to the fact that because

of the coding-decoding procedure used, the shorter path between the

two first C's must be combined with the longer one between the two

last C's, or vice versa, the same delay resulting in both ways) to a+
is 11 (cf. Fig. 24b for this and for several estimates that follow).

This is also the delay to the output of the io immediately to the right

of the last C, i.e., to the entrance of the straight channel leading to

d. The delay through that channel to d (taking the true length of

PP(T) into consideration, which is 15 according to Fig. 19g) is 18.

The delay from a+ through PP (1 ) to b is 18 (cf . the end of Sec. 3.2.1 )

.

The delay from b to the first coincidence-C (2 squares to the right of
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C at C1-C2 in_Fig. 24a; it must again be remembered that the true

length of PP(T) is 15 and that the true distance of b from the top of

PP(T) is 2; cf. Fig. 19g) is 22. Thus, the total delay from a to the

first stimulation of £2 at d = c* is 1 + 11 + 18 = 30. Furthermore,

the total delay from a to the moment when the first coincidence-C

becomes passable for stimuli coming from c/-c2
' (because it is being

stimulated from the first PP(1); cf. Fig. 24a) is 1 + 11 + 18 +
22 = 52.

Note that it takes a pulse from ai that gets from the second C
from the left into the Ci -c2 channel, a delay of 5 or of 7 (depending

on which of the two available paths between the two first C's is

followed; cf. Fig. 24b) to get there (i.e., to emerge on the upper side

of the second C). The delay from here to c2
'

is 5 (since the true

height of PP(T) is 4; cf. Fig. 19g), and from there to the first coinci-

dence-C (cf. Fig. 24a) is 3. Hence, the total delay from a to the first

coincidence-C through this illegitimate channel, is 1+ 5 + 5 + 3 =
14, or 1 + 7 + 5 + 3 = 16. This delay increases by 9 for the second

coincidence-C, and by 8 more for the third one. Hence it is at most

16 + 9 = 25 and 25 + 8 = 33 for these C, i.e., at most 33 overall.

Now we saw that even the first coincidence-C becomes passable for

stimulation from the Ci-c2 channel only with a delay of 52 after the

stimulation at a. (For the other coincidence-C this delay is, of course,

still longer.) Hence this illegitimate stimulation comes too soon to

cause trouble, confirming our earlier assertion to this effect.

[Von Neumann next considered the i'th response of £2 at c = d*,

for i = 1, 2, 3. He calculated the delays through $ for each response

and made sure that the internal timing was correct. The crucial point

about timing is best explained in connection with Figure 23. Consider

the pulse which constitutes the first response of 12; let t be the time

it arrives at cell D14. At time t gate F14 is open and gates F8 and

F2 are closed. This pulse will pass through gate F14 and, among
other things, enter input a+

2
(at time t + 9) to start the second

periodic pulser, which will in turn open gate F8. Will gate F8 be

opened in time to let the original pulse through to start the third

periodic pulser, thereby creating a malfunction? A calculation of the

delays along the two paths to cell F8 shows that this will not happen:

the original pulse reaches F8 from the left at time t + 12, while the

gating pulse reaches F8 from the right at time t + 49. A similar

calculation shows that there is no trouble at gate F2.\

This completes the discussion of the delays within $ and the proof

of the consistency of its functioning. We restate those of <£'s delay

characteristics that are externally relevant: from the stimulation at
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a to the first stimulation of £2: 30; from the first response of 12 to the

second stimulation of 12: 66; from the second response of 12 to the

third stimulation of 12: 83; from the third response of 12 to the output

at b (Fig. 24d):59.

Let the delay from z'th stimulation of 12 to its i'th response be

Wi (i = 1, 2, 3). (This is a property of 12, not of <£!) Then the total

delay from a through <£ (and three times through 12!) to 6 is 30 +
wx + 66 + w2 + 83 + wz + 59 = 238 + wx + w2 + wz .

3.5 The 1 vs. 10101 Discriminator: Structure,

Dimensions, and Timing

The next organ in this series is the I vs. 10101 discriminator. This

organ has an input a and two outputs b, c. It performs a function

that we have consciously refrained from postulating for the decoder

(cf. the beginning of Sec. 3.3) : it discriminates between two sequences,

one of which is part of the other. To be specific, the arrival of a single

stimulus at a causes an emission at 6, provided that it is preceded by

a no-stimulus sequence of sufficient length. The arrival of a sequence

10101 at a causes an emission at c (but not at 6; i.e., it paralyzes the

effect of the single stimulus that it contains; cf. above). . . .

The relation between the actuating sequences 1 (or rather 0 • • • 01;

cf. above) and 10101 at a and the response at 6 and c is freely timed;

i.e., the delay between these is not prescribed at this point. . . .

The 1 vs. 10101 discriminator has the symbol ^r.

[ Von Neumann next developed his network for For a reason to be

explained, we have replaced his design of ^ by a simpler one.

The discriminator^ is used in reading an arbitrary cell xn of the

infinite linear array L (Fig. 37). "Zero" is represented in cell xn by

the unexcitable state U, and "one" is represented by the quiescent

but excitable state T030 , which is an ordinary transmission state

directed downward. Cell xn is read by sending the sequence 10101

to input Vi of connecting loop Ci and noting whether 1 or 10101

emerges from output Wi of Ci . The sequence 10101 travels down the

upper half of Ci and enters cell xn . If cell xn is in state U, the sequence

1010 converts xn into state T030 , and the remaining T passes through

xn and travels down the lower half of Ci to output Wi . If xn is already

in state T030 , the complete sequence 10101 travels around Ci and

comes out at W\ . Hence a I at Wi represents a "zero" at xn , while a

10101 at wi represents a "one" at xn . The T vs. 10101 discriminator

^ discriminates between these two cases.

At the time von Neumann designed his discriminator he did not

know what other sequences might be fed into it. As the discriminator
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is actually used in the read-write-erase unit RWE (Figs. 37 and 39),

no other case arises. By taking advantage of this knowledge, and

improving von Neumann's design in another respect, we can greatly

simplify both his discussion and his design. For this reason we replace

von Neumann's discriminator by Figure 25.

Assume as a rule of usage that is normally quiescent, but that on

occasion either the sequence 10000 or the sequence 10101 enters

input a, starting at time t, and that once one of these two sequences

enters input a, no further stimuli enter input a untile is quiescent

again.

We will consider the two cases separately. In the first case, 1 enters

input a at time t, travels along the path indicated by the long arrow,

and is emitted from b at time t + 40. This 1 also enters the decoder

D (10101), but it dies there.

In the second case the sequence 10101 enters a at times t through

t + 4, producing two immediate effects. First, the sequence 10101 is

decoded by D (10101), so that a single pulse emerges from output

b
1

at time t + 21. Second, the sequence travels along the path from

input a to output b, entering cell J14 at times t + 38 through t + 42.

This sequence would later be emitted from output 6, except that it is

blocked by the killing action from cell J13 in the following way. The
pulse from b

1

enters a at time t + 24, so P (11111) sends stimuli into

cell J14 at times t + 39 through t + 43. This means that any pulse

entering cell J14 from cell 114 during times t + 38 to t + 43 inclusive

is lost. Since the sequence 10101 enters cell J14 from the left at times

t + 38 through t + 42, it is destroyed and there is no output from 6.

The pulse from b
1

at time t + 21 is emitted from output c at time

t + 25.

Combining both cases we have, for the discriminator of Figure

25 : if 10000 enters input a at times t through t + 4, a stimulus emerges

from output b at time t + 40, and nothing comes from output c; while

if 10101 enters input a at times t through t + 4, a stimulus emerges

from output c at time t + 25, and nothing comes from output b.

Hence performs the required discrimination.

We now summarize the characteristics of the discriminator ^ of

Figure 25 and von Neumann's design, putting the parameters for his

design in parentheses. The 1 vs. 10101 discriminator^ has width 10

(22), height 14 (20); the input a is 8 (1) cells above the bottom, the

output 6 is 0 (6) cells above the bottom, and output c is 13 (18) cells

above the bottom. The delay from input a to output b is 40 (86),

and the delay from input a to output c is 25 (49). It is possible to

make a much smaller 1 vs. 10101 discriminator than Figure 25, but
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Figure 25 is in the spirit of von Neumann's design and is quite satis-

factory for our purposes.

Discriminating between the two sequences 1 and 10101 is a special

case of the general task of discriminating among binary sequences.

Another instance of this general task occurs in the coded channel of

the next section. Von Neumann solved the problem there by using

sets of sequences such that no sequence bitwise implies (is covered by)

any other, even if the sequences are shifted in time relative to one

another. The sequences 1011, 1101, 1110 constitute such a set. For

the sake of completeness we note that the general task of discriminat-

ing among binary sequences could be accomplished by a unit which

"recognized" a given sequence and no other. An example of a recog-

nizer is given in Figure 26.

The recognizer R (101001) of Figure 26 performs the following

function. Suppose that at (relative) times 0 through 5 a sequence

iHHHHH6 enters input a, and assume that this sequence is both pre-

ceded and followed by several zeros. Under these circumstances the

recognizer R (101001) emits a stimulus from output b at time 48 if

and only if the entering sequence is 101001 (i.e., i
1

,
i, i

6
are 1 and

i
2

,
i, i are 0). We will explain how the recognizer R (101001) accom-

plishes its purpose. The general principle (algorithm) for designing

an arbitrary recognizer R(iH'2
• • • i

n
) will be evident at the end of

this explanation.

The following conditions obtain.

(I) The decoder D (101001) emits a pulse from output b
1

at time

23 if and only if i
1

,
f, i

6
are all 1.

(II) The pulser P(1101) emits a pulse from output b
2
at time 23 if

and only if i
2
or i or i is 1

.

There are three cases to consider.

(A) First case: the input sequence is 101001, i.e., i
1

,
i
3

, i
6
are 1 and

i
2

,
i, i are 0. Nothing comes from b

2
or 6

3

, and the pulse from

output b
1

is emitted from output b at time 48.

(B) Second case: i
1

,
i, i

6
are 1 and one or more of i

2

,
i, i are 1.

Pulses are emitted from both b
1

and b
2
at time 23. These pulses

enter the confluent state 15 at time 29, causing a pulse to enter

input a at time 31. The pulser P (11111) emits the sequence

11111, which enters cell Tl at times 47 through 51 inclusive.

The pulse from b
1

at time 23 zig-zags along rows 1 and 2
y
entering

cell Tl at time 46, and is destroyed by the killing action of

11111 into cell Tl. Hence nothing is emitted.

(C) Third case: not all of i\ i, % are 1. No pulse is emitted from
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output 6
1

, and hence none from output 6. If a pulse is emitted

from 6
2

, it is blocked at confluent state 15.

This concludes our discussion of the recognizer R (101001).]

3.6 The Coded Channel

3.6.1 Structure, dimensions, and timing of the coded channel:

[In 3-dimensional space, wires can cross one another without

intersecting, that is, without making any contact which transfers

information from one to the other. In 2-dimensional space it is

topologically necessary for communication channels to intersect, and

so there is a problem of sending information down a channel in such

a way that it does not appear in intersecting channels. This problem

could be solved by adding a wire-crossing primitive. Such a wire-

crossing primitive would itself involve extra states, and it would

necessitate additional sensitized states for the direct (construction)

process. Von Neumann solved the problem in his 29-state cellular

system by means of a "coded channel."

Figure 27 shows an example of a coded channel constructed in

accordance with von Neumann's algorithm. There are inputs ai , a2 ,

a3 and outputs 61,62,63; each input a t
- is associated with the corre-

sponding output (or outputs) hi . Thus a pulse into input a2 will

eventually appear at both 62 outputs (not simultaneously) and

nowhere else. The coded channel is made up of seven pulsers and

seven decoding organs (all shown in reduced size), together with a

"main channel" running from the output of P (10011) to the input

of D(llOOi).

The coding is done with six sequences of length five such that none

of these sequences bitwise implies (is covered by) any other. The
sequences 11100, 11010, 11001, 10110, 10101, 10011 are associated

with ai , a2 , a,z , 61 , 62 , 63 , in that order. The way the sequences

operate is best explained by means of an example. Suppose input a2

is stimulated. This will cause pulser P (11010) to inject its charac-

teristic 11010 into the main channel. This sequence will travel to the

end of the main channel, but because it is distinct from every other

sequence used it will affect only decoder D (11010). D (11010) will

then send a pulse to pulser P (10101), which will inject its charac-

teristics 10101 into the main channel. The sequence 10101 will travel

to the end of the main channel, but because it differs from every other

sequence used it will affect only the two decoders D (10101), both

of which will emit pulses from their outputs 62 .

The inputs and outputs of the coded channel may be positioned in

any order. It is because of this that two sequences are associated
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with each input-output pair, the conversion from one sequence to its

mate taking place at the top of Figure 27.

The inputs to the coded channel must be spaced sufficiently far

apart in time to avoid corruption or cross talk. For suppose ax and

a2 were stimulated so their outputs 11100 and 11010 followed each

other immediately in the main channel. The combined sequence

1110011010 contains the sequence 11001 which is assigned to input

a3 , and hence which would operate D (11001) and eventually cause

an output at 63 .]

Our third construction in this series is the coded channel. Up to

now it has been our policy to give an exact and exhaustive descrip-

tion and discussion of each organ that we had in mind. In the present

case, however, it is preferable to depart from this principle; i.e., it is

much simpler and quite adequate for our purposes to proceed in a

more heuristic fashion. We will therefore discuss more broadly what

the need is that we wish to satisfy at this point, and by what means

we can do this. We will then deal with the essential, prototype special

cases, and develop a sufficient discussion, so that in our actual subse-

quent application (cf. later) the specific organ that is needed will

emerge with little effort.

The coded channel performs a function which is necessitated by

the peculiar narrowness of 2-dimensional space. Indeed, a logical

network may easily require crossing of lines in a manner which cannot

be accommodated in 2-dimensional space. For example, if five points

a, 6, c, d, e are given and every one of them is to be connected to every

other, this cannot be done in 2 dimensions without intersections, as

schematically shown in Figure 28a. The fine connecting c to e is

missing in this figure and cannot be inserted without an intersection.

An actual instance of interconnections requiring intersections occurred

during the construction of the triple-return counter (cf. the middle

part of Section 3.4) in connection with the development of Figure

24b from Figure 24a.

It should be noted that this difficulty does not arise in 3-dimensional

space. However, since all other phases of our constructions can be

carried out in 2 dimensions, just as well as in 3, it is worthwhile to

keep the dimensionality to the former, low value, if this is otherwise

possible. For this reason we accept the subordinate difficulty of line-

crossing in 2 dimensions and the necessity of special constructions to

overcome it.

The obvious procedure would be to construct a special organ which

performs the elementary act of line-crossing, as schematically shown

in Figure 28b. A more detailed representation of this is given in Figure
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28d : This organ has two inputs a, b and two outputs c, d. It is desired

that a stimulation of input a elicit (with a suitable delay) a response

at output d, and a stimulation at input b (again with a suitable, and

possibly different delay) a response at output c. Note that the actual

cyclical arrangement of a, 6, c, d is essential: if they are arranged as

shown in Figure 28e—or as shown schematically in Figure 28c—there

would obviously be no difficulty whatever.

It is preferable to aim immediately at somewhat more than this.

Indeed, if we only constructed organs as indicated in Figure 28d

which effect a single line-crossing, we would have to combine large

numbers of these in our subsequent constructions. This would lead

to quite awkward geometrical configurations and make our general

design operations rather inconvenient. It is therefore better to con-

struct a multiple line-crossing organ, in the sense that we will describe

more fully below.

A multiple line-crossing organ that would be universally useful may
be described as follows. It is a rectangular area A, as shown in Figure

28f, on whose periphery there are various inputs and outputs. These

inputs and outputs are shown in Figure 28f, and in Figures 28g-28k

also, as bars. Every input is designated by a symbol a v , v = 1, • • •
,
n;

every output is designated by a symbol b v , v = 1, • •
, n. There may

be several av with the same v, and there may be several b v with the

same v. The order in which all of these a v and b v are arranged around

the periphery of A may be prescribed in any manner whatsoever. It

is desired that upon stimulation of an a v (i.e., of any one of the

—

possibly several—a/s with the v under consideration) all the 6/s

(with the same v) should respond, with appropriate (and not neces-

sarily equal) delays.

However, for the purposes for which this device will be needed, a

slightly weaker requirement will do equally well, and this requirement

will be somewhat easier to implement, as will appear below. This

weakening of the requirement is as follows. We define a certain

cyclical sense of the periphery of A, as shown by the arrows in Figure

28g. We then break this cyclical arrangement; i.e., we change it into

a linear one, by cutting it at the point designated by p—i.e., it is

now thought to begin at p, circle the periphery of A in the direction

of the arrows and end again at p. We now require that the stimulation

of an av should cause responses only in those b v (with the same v )

which He ahead of the av in question in the direction of the arrows.

Finally we cut the periphery of A open at p; i.e., we replace it by an

open line. This line may be straight or broken; i.e., it may consist

of one or of more straight pieces, as shown in Figure 28h-28k. At
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any rate, the inputs a v and the outputs b v remain attached to it as

before, but we may also change (invert) the side of the line to which

they are attached. (For the latter, cf. Fig. 28k.) Figures 28h-28k

also show that we keep indicating the (previously cyclical, now
linear) sense referred to above by arrows (as in Fig. 28g), and we
replace the point p by pi (beginning) and p2 (end).

The obvious way to achieve the functioning described above is by

coding and decoding. To do this we correlate to every v = 1, • • •
, n

a suitable stimulus-no-stimulus sequence %} • • • iv
m

. (The length m
of the sequence %} • • • iv

m could have been made dependent on v,

but this is not necessary.) Now we attach to every input av a cod-

ing organ Y*(iv
l

• • • iv
m

), and to every output b v a decoding organ

D(zV • • • iv
m

). We connect all these inputs and outputs by a con-

nected line of (ordinary) transmission states— o or to or o or io,

with the arrow each time pointing in the proper direction—following

the path indicated by the arrows in the illustrative figure (any one

of the Figs. 28h-28k that one wishes to use for picturing this proce-

dure). To be more precise, the connecting links (for the entire system

of a„'s and b v 's) must consist of such transmission states. This is also

true for the places where the inputs (the a v's) are tied in. However,

at the places where the outputs (the 6/s) are tied in, the stimulus

must be able to progress in two directions (namely along the subse-

quent transmission states and to the output that is attached at the

point in question). Hence at each one of these places a confluent

state C is required. This chain of (ordinary) transmission states and

of confluent states will be called the main channel of the organ.

Figure 29 (which may be viewed as an elaboration of Figure 28i)

shows this in more detail. This figure shows a particular, but typical,

distribution of a/s and 6/s (v = 1, • • •
,
n) with n = 2. Note that in

Figure 29 the input of P(iv
l

• • • iv
m

) is at the distance of one square

from the true input a v , and is designated by a/, while the output of

P(z7 • • • iv
m

) is designated by &/. Also, the output of D(iv
l

• • . iv
m

)

is at the distance of one square from the true output b v , and is desig-

nated by 6,", while the input to Dfc1
• • • iv

m
) is designated by a/'.

Note, furthermore, that each P(z7 • • • iv
m

) or D(z7 • • • iv
m

) may be

rotated by any one of the four angles 0°, 90°, 180°, 270°, and, if neces-

sary, also reflected about the horizontal or the vertical, against the

standard arrangements in Figures 16g and 22c. Clearly, this calls

merely for trivial transformations of the constructions of Figures 16

and 22, respectively.

We must now select the sequences iv
l

• • • i™, v = 1, • • •
, n. Each

bv ,
i.e., each D^1 ••• iv

m
), must respond to the i™ with
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n = v, and to no other. In view of the properties of the D^'1
. • . i

m
)

{cf. the beginning of Sec. 3.3}, this means that no . . . i™> with

fx ^ v must contain iv
l

• • • i v
m

. In order to avoid "misunderstandings"

due to mis-positioning in time, this requirement must also be extended

to the case when %^ • • • i™ and iv
l

• • • i™ are shifted relatively to

each other (each one of these two sequences being both preceded and

followed by a sufficiently long sequence of O's).

This is certainly the case if the iv
l

• • • iv
m

, v = 1, • • •
,
n, are pair-

wise different, and if all of them begin with a stimulus and contain

the same total number k of stimuli. We assume, therefore, that these

conditions are fulfilled.

Hence our problem is to find n pairwise different sequences iv
2

• • • i v
m

(we need not consider iv
l

, since it is 1 ), corresponding to v = 1, • • •
, n,

each of which has the length m — 1 and contains precisely k — 1

ones. The number of (different) sequences of this kind is obviously

(m - l\

\k - \)'

Consequently the choice in the above sense is possible if and only if

(12-) »s(r:!)-

Therefore the only task remaining on this count is that of choosing

m, k so that they fulfill condition (12').

It would be unreasonable to choose k so that k — 1, too, fulfills

condition (12') {with the same m}. Hence

(ra — l\ /m — l\

k -\) >
\k -2)>

which means k — 1 < m — k + 1,2k < m + 2, and so 2k ^ m + 1,

i.e.,

(13')

Actually the choices k = (m + l)/2 and k = m/2 are usually the

practical ones.

These discussions make it clear how the construction of the coded

channel must be effected in each specific special case that may arise.

We will use for its abbreviated representation the schemata of Figures

28h-28k, with the arrows but without necessarily including the

letters p± , pi , and with each cell entry or exit marked with its a v or

b v , to the extent to which this is desirable.
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There still remain some questions of detail that need to be con-

sidered.

All the organs P^',, 1
• • • iv

m
) and &(iv

l
• • • iv

m
) of Figure 29 have

the same k (cf. Sees. 3.2.1 and 3.3 above), and therefore the same

length (cf. Figs. 16g and 22c). As Figure 29 shows, the P^V • .
. i*)

and D(^V • • • iv
m

) are so arranged (oriented), that it is always this

length that defines the width of the parallel strip along the main

channel that they occupy. Hence this width is uniformly 2k. Adding

to it 1 for the main channel and 2 for two protecting strips of U's

along either side, we obtain the entire width of the parallel strip

along the main channel, which forms the organ (i.e., the coded

channel): 2k + 3.

The heights of the various organs P(iv
l

• • iv
m

) and D(zV • • • iv
m

),

u + 2 with their various u, might vary a priori (cf. Figs. 16g and

22c). Inspection of the definition of the u of a P(zV • • • iv
m

) from

its u° (cf. (2') and the remark before it in Sec. 3.2.1) shows that the

u of the P(tV • • • iv
m

) can be made all equal (as the maximum of all

u°). Let u be the common u of all P(iV ••• iv
m

). Inspection of

the definition of the u of a D(zV • • • iy
m

) from its u° {cf. equation

(ll') and the remark before it in Sec. 3.3} shows that the u of the

D(tV • • • iv
m

) can be made all equal (as the maximum of all u°)\

in addition, it is not hard to verify that all u° are automatically

equal. At any rate, let u be the common u of all Dfe1
• • • iv

m
).

As Figure 29 shows, the P(ip
l

• • • iv
m

) and D(iv
l

• • - i™) are so

arranged (oriented), that it is always these heights that define the

distances of the organs P(zV • • • iv
m

) and D(zV • • • iv
m

) along the

main channel. However, the distances obtained in this way are in

any event only lower limits: whenever it is desired to increase the

distance between two neighboring organs {from the P(zV • • • iv
m

),

D^',1
• iv

m
) class}, it suffices to replace the single separating line

of U's (as shown in Fig. 29) by a suitable, larger number of such lines.

The next question relates to delays. The delay from the stimula-

tion at a particular a v to the response at a particular b v is easily deter-

mined by inspection of Figure 29. The [total] delay from aj through

P(tV iv
m

) to bj is d! = 2k + u + 2 (cf. the end of Sec. 3.2.1);

the delay from a" through D (iv
l - .

. iv
m

) to b" is d" = 3k + u + m
(cf. the end of Sec. 3.3). Let A be the distance along the main channel

from the 1 (or to or or io) where the av is tied in to the C where

the b v is tied in (taking every C twice, and including the terminal

C, but not the initial t—or to or 1 or io—into the count of squares,

i.e., the distance). Then the total delay from the stimulation at a v to
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the response at b v is 1 + d! + 2 + A + 1 + d" + 1 = A + d' +
d" + 5.

We must also consider the question of corruption by interference,

which assumes here the following shape. Clearly the stimulation at

an a v will cause a response at every b v (assumed to lie ahead in the

direction of the arrows along the main channel). Also, the stimulation

at an a v will not cause a response at any 6M with /x ^ *>, provided that

no other stimulations (at one or more ax's, with X's among which

X = v as well as X ^ v may occur) have taken place. The question is

therefore : Can stimulations at several a/s (with repeated or different

v's) cause a response at any 6M , where neither of the stimulations

referred to above could have caused a response by itself? Or, to be

more specific: What rules must we establish for the stimulations at

the a v , to prevent such occurrences?

These rules will be given in the form of prescribing certain minimum
delays between a stimulation at an a v and a simultaneous or subse-

quent stimulation at any other a\ . (This includes X = v as well as

X v\ also for X = v and a subsequent stimulation the two a v may
or may not be the same.)

Consider, accordingly, a 6M . A response will take place there if its

Diin1 ••• in
m

) receives, at its a/', a stimulus-no-stimulus sequence

containing • • - iM
m

. Each av can produce a sequence iv
l • . i™.

What we must prevent is that a superposition of several shifted speci-

mens of these should contain a • • • i™ which did not actually

occur (in the correctly shifted position) as one of them.

This could only occur if two shifted iv
l

• • • iv
m (of different origin)

contributed together (but neither of them separately!) ^ k stimuli

to the same sequence j
1

• • • j
m

. Let this sequence j
l

• • • j
m have subse-

quences of lengths m \ m"
,
respectively, in common with these two

sequences iv
l

• • • iv
m

. Then m', m ^ 1, m + m ^ k. The distance

of the beginnings of the two shifted sequences iv
l

• • • iv
m must then

be either ^ |
m — m"

\

(if they are both at the same end of the

sequence j
l

• • • j
m

) or ^ 2m — m — m (if they are at opposite

ends of the sequence j
1

• • • j
m

). The former is ^ k — 1, the latter

is ^ 2m — k, and (since (12') requires k ^ m) k — 1^2m — k.

Hence the distance in question is at any rate ^ 2m — k. Hence the

occurrence in question is excluded if the distance (of the beginnings)

of the two shifted sequences iv
l

• • • iv
m is > 2m — k, i.e., ^ 2m +

1 - k.

Consider therefore two inputs av ,
a\ , such that the output 6M lies

ahead of them in the direction of the arrows along the main channel.



DESIGN OF SOME BASIC OKGANS 197

(For the relationships between v, X, and between av , a\ , cf. above.)

By interchanging a v , a\ , if necessary, let ax lie ahead of av in the

direction of the arrows along the main channel. Let the distances

from the tie-in points of a v ,
a\ to that one of 6M be A

7

,
A 77

,
respectively,

and between the tie-in points of a v and of a\ (taking every C twice,

and including one, but not the other endpoint, into the count of

squares, i.e., the distance) A* = A
7 — A

77
.

Now let a v ,
a\ be stimulated at the times t\ t

11
,
respectively. Then

the sequences iv
l

• • • i™, ix
1

• • • i\
m

, that are thus created, appear at

a/' at the times t
1 + 1 + d! + 2 + A 7 + 1, t

11 + 1 + d! + 2 +
A 77 + 1, respectively. The difference of these is (t

1 + A 7
) — (t

11 +
A 77

) = (t
1 — t

11
) + A*. Hence our above condition becomes

|

(t
1 - t

11
) + A*

|
^ 2m + 1 - k. This means, that either (t

1 -
t
11

) + A* ^ 2m + 1 - fc, i.e.,

(14') t
1 ^ t

11 + (2m + 1 - k - A*),

or (t
1 - t

11
) + A* ^ - (2m + 1 - k), i.e.,

(15') t

11 ^ t
1 + (2m + 1 - k + A*).

At this point it is best to distinguish certain special cases, as

follows.

First, t
1

^ 2

77
,

i.e., a stimulation (at a v , time t
1
) is followed by a

stimulation ahead of it in the direction of the arrows along the main

channel (at a\ , time £
77

). First subcase: A* < 2m + 1 — k. In this

case condition (14') is unfulfillable and condition (15') requires that

the delay (from t

1
to £

77
) be ^ (2m + 1 — k) + A*. Second subcase:

A* ^ 2m + 1 — k. In this case condition (14') requires that the

delay from (t
1
to t

11
) be ^ A* — (2m + 1 — k) and condition (15')

requires that it be ^ (2m + 1 — A: ) + A *.

Second, t
1

^ £

77
,
i.e., a stimulation (at ax , time t

11
) is followed by

a stimulation behind it in the direction of the arrows along the main

channel (at a v , time t

1
). Third subcase: A* < 2m + 1 — k. In

this case condition (14') requires that the delay (from t

11
to t

1

)

be ^ (2m + 1 — k) — A*, and condition (15') is unfulfillable.

Fourth subcase: A* ^ 2m + 1 — k. In this case condition (14') is

automatically fulfilled and condition (15') is unfulfillable.

These four subcases can now be summarized, forming a rule, whose

observance excludes corruption by interference. This rule is given in

what follows.
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If there has been a stimulation at an input ap , then a stimula-

tion at an input a ff is only permissible with a delay d (^0),
subject to the following conditions.

Let the distance between the tie-in points of ap and of a„

(taking every C twice, and including one, but not the other

endpoint, into the count of squares, i.e., the distance) be

(16')
A*^°>-
First case: aa lies ahead of ap in the direction of the arrows

along the main channel. Then either d ^ (2m + 1 — k) +
A*, or, if A* ^ 2m + 1 — fc, alternatively d ^ A* — (2m +
1 - k).

Second case: ac lies behind ap in the direction of the arrows

along the main channel. Then there is a limitation only if

A* < 2m + 1 — k, in which case d ^ (2m + 1 — k) — A*.

8.6.2 Cyclicity in the coded channel. To conclude the discussion of

the coded channel, we come back to the question of cyclicity, which

was briefly referred to early in Section 3.6.1.

The reason for interrupting the main channel at p in Figure 28g,

that is, for not continuing it from p2 to pi in Figures 28h-28k and

29, is clear. If such a connection existed, i.e., if the main channel were

a closed loop, then a sequence i v
l

• • • iv
m (injected by an a v into this

channel) would keep circulating in it forever, i.e., keep stimulating

each b v periodically. This is not wanted—we want a stimulus at an

a v to stimulate each b v precisely once. However, there are various

ways to circumvent this difficulty. We are giving in what follows one

way that seems particularly simple.

Consider Figure 30a, which is the equivalent of Figure 28g, but

without the interruption at p. We have nevertheless indicated a direc-

tion along the main channel by the arrows, but this is now to be

viewed as cyclical. We have also put two points p\ , p2 on the main

channel, but these are not meant as interruptions or terminations.

The unmarked bars on the main channel are the av and b v , as de-

scribed in connection with Figures 28f and 28g-28k. We now proceed

to transform the structure indicated by Figure 30a in the following

way.

In addition to the n index values v = 1, • • •

,
n, we introduce n

additional index values v = l', • • •
, n. We may identify these with

n + 1, • • •

,
2n, i.e., put v = v + n, but this is not relevant. However,

it is relevant that n has been replaced by 2n {e.g., in condition (12')}

.

We now cut the periphery open between pi and p2 , and attach the

continuations qx , pi and p2 , q2 to the main channel at these two

points, as shown in Figure 30b. Along the original main channel, i.e.,
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P1P2 , we leave the a v unchanged, but we replace each b v by the corre-

sponding b v > . This is indicated in Figure 30b by affixing an asterisk

to each bar along the original main channel, i.e., on the portion pxp 2 .

Next we place outputs bi ,
• • •

,
bn (in this order) on the inner side

of P2 , #2 (the one turned towards Pi , qi), and the inputs av ,
• • •

,
an >,

(in this order) on the inner side of pi , qi (the one looking toward

P2 , #2). We then connect each bv (v = 1, • • •
,
n) directly to its corre-

sponding a v > . All this refers to the area in Figure 30b that is enclosed

by dashed line and cross hatched. These arrangements are shown in

detail on Figure 30c, which gives an enlargement of that area. Note

that the endings pi , qi and p2 , qi of the main channel are moved
apart in Figure 30c by as much as needed to accommodate the outputs

61 ,
• • •

,
bn and the inputs av ,

• • •
,
an >, that we introduced above

for this region. More specifically, each a v > means that a P(zV • • • iv
m

)

is there, and each b v means that a D(z7 • • • iv
n

) is there. It is for

these that space (i.e., the necessary distance between pi , qx and

P2 , #2) must be provided. The connection from b v to a v > , shown in

Figure 30c, therefore follows the pattern shown in Figure 29: the

output b" of D(zV • • • iv
m

) is followed (by one square) by b v ; the

input av > of P(z'J> • • • i™,) is preceded (by one square) by a v > . The
connection from b v to a v > is shown in Figure 30c (by an arrow) as a

vertical channel (plausibly of {ordinary} transmission states io)
?
but

it suffices to make it a direct contact of b y and a v > . In fact, the single

U borders of D(tV • • • iv
m

) between b" and b v and of P(iJ/ • • • i™, )

between a v > and av > (cf. the analogs to this in Fig. 29) can be identified

so that b v

,f

merges with a v > , and bv with av > .

The functioning of this organ, according to Figures 30b-30c is now
easily analyzed. A stimulation at an av (which must be one of the

bars marked with an asterisk on the portion pip 2 of Fig. 30b) can only

stimulate a b v . There exists precisely one b v , and this lies ahead of

the a v in the direction of the arrows along the main channel, namely

on the portion p2q2 , as detailed in Figure 30c. Hence the b v will be

stimulated, and from it the stimulus goes directly (along the arrow)

to a v >
, on the portion qxpi , as detailed in Figure 30c. Thus the a v > is

stimulated, which can only stimulate All &„>'s lie ahead of the

a v > , in the direction of the arrows along the main channel, namely,

on the portion p xp2 of Figure 30b, i.e., among the bars marked with

asterisks. To sum up, a stimulus at an av (necessarily at a bar marked

with an asterisk in Fig. 30b) will stimulate all the bv > (all among the

bars marked with asterisks in Fig. 30b)—irrespective of their positions

relative to each other on the portion pip 2 of Figure 30b. Also, after

this has taken place the stimulus will die, i.e., no periodic repetition
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will take place, since the main channel of Figure 30b is open (from

qi to #2 ,
i.e., is not cyclical). Thus, from the point of view of Figure

30a, we have precisely the events that were intended.

[ This concludes von Neumann's discussion of the coded channel. It

will be recalled that he concluded his discussion of the non-cyclic

coded channel (Sec. 3.6.1) with rule (10 ), which concerns corruption

resulting from two stimuli entering the coded channel too close to-

gether. It is natural to ask why he didn't state a corresponding rule

for the cyclical coded channel of Figure 30 (Fig. 27 is an example).

Von Neumann gave no reason, but it may be because he later con-

structed the control organ for his universal self-reproducing autom-

aton with a non-cyclic coded channel; see Figure 37.]



Chapter 4

DESIGN OF A TAPE AND ITS CONTROL

4.1 Introduction

[4.1.1 Abstract. In the present chapter von Neumann shows how
to embed an indefinitely extendible tape and its control in his infinite

cellular structure.

The following units are involved in the tape and its control:

(1) A linear array L for storing information: "zero" is represented

in cell xn by state U and "one" is represented by state io.

(2) A connecting loop Q for reading an arbitrary cell xn .

(3) A timing loop C2 , used in modifying the length of the connecting

loop Ci .

(4) A memory control MC, used to control the operations of L. Ci .

and C2 .

(5) The constructing unit CU, which controls MC.
Except for CU, all these units are shown in Figure 37, though not in

correct proportion. See also Figure 50.

Von Neumann describes these units in a general way in the re-

mainder of the present section. He develops the detailed operations

for lengthening and shortening loops Ci and C2 and for writing in cell

xn in Section 4.2. He designs most of the memory control MC in

Section 4.3; the design will be completed in Section 5.1.

Von Neumann developed his design in several stages, which he

thought out as he proceeded. The final design operates as follows.

The constructing unit CU sends a pulse to the memory control

MC signifying that cell xn is to be read. This pulse causes the sequence

10101 to enter the connecting loop Ci . The sequence 10101 then

enters cell xn with the following effect : if xn is in state U the sequence

1010 changes it into state 10 and T returns to MC, while if xn is in

state 10 the whole sequence 10101 returns to MC. A T vs. 10101

discriminator ^ detects the output and informs the constructing unit

CU whether xn stored a "zero" or a "one." In either case cell xn is

left in state io.

The constructing unit CU then tells the memory control MC

201
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whether the loop Ci is to be lengthened so as to pass through cell

xn +i or shortened so as to pass through cell xn-i , and whether cell xn

is to be left in state U ("zero") or 10 ("one"). Loop Ci is used to

time the lengthening (or shortening) of loop C2 . Then loop C2 is

used to time the lengthening (or shortening) of loop Cx . The new
bit of information is written in cell xn while loop Ci is being lengthened

(or shortened). At the end of the whole process the memory control

MC sends a finish signal to the constructing unit CU.
We have indicated here only those functions of the constructing

unit CU which concern the memory control MC. The primary purpose

of CU is to carry out the construction of a secondary automaton

whose description is stored in L. Thus the universal constructing

automaton has two parts : the constructing unit CU, and an arbitrarily

large memory and its control (MC, L, Ci , and C2 ). See Section 1.6.1.2

and Chapter 5.]

4.1.® The linear array L. We have reached the point where the

subsidiary constructions are completed and our first major synthesis

can be undertaken. This highly composite organ that we will now
construct has a single purpose, but it will actually account for approxi-

mately half of the entire self-reproducing organism.

It is best, therefore, to stop here for a moment and make some

general observations regarding the overall organization that is to be

developed.

We will need an automaton that can carry out general logical

functions. The specific way in which this is integrated into the effect-

ing of self-reproduction will be worked out in detail later, but the

qualitative need for a general logical automaton should be clear a

priori. These matters were broadly discussed in Chapter 1. They were

first brought up in the formulation of the questions (A)-(E) in

Section 1.1.2.1; their elaborations ran through Sections 1.2 to 1.7,

and they were particularly in the foreground in Sections 1.4 to 1.6.

We will therefore, for the time being, take the need for a general

logical automaton for granted and discuss the ways and means of

constructing one.

We noted in Sections 1.2.1 and 1.4.2.3 that a general logical auto-

maton is necessarily organized around two main parts. The first part

is a network that can carry out the elementary logical functions

(+, • , and — ; cf. the main discussion in Sec. 1.2.1 ), and by combining

these can evaluate all propositional functions in logics (cf . the end of

Sec. 1.2.1). The second part is an arbitrarily large (finite, but freely

adjustable) external memory, and the network that is needed to

control and to exploit that memory. We know that the first part,
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the machine for propositional functions, can be constructed with

relatively simple means; indeed, the principles that are involved in

this construction were in continuous use in our past constructions.

We will take this part up in detail later. We turn our attention first

to the second part, i.e., to the arbitrarily large external memory and

its ancillary network.

The arbitrarily large external memory's physical embodiment is

the linear array L that was discussed in Sections 1.4.2.1-1.4.2.4. We
saw there that it was desirable to form it from cells, each of which

could be in any one of k preassigned states. It became clear in Section

1.4.2.1 that these states, in order to be convenient for their "nota-

tional" role, must be quasi-quiescent states, i.e., states like U or the

unexcited forms of transmission or confluent states. For a variety of

reasons it is most practical to use U's and ordinary transmission

states. As indicated in Section 1.4.2.4 we will use a binary notation;

i.e., we put k = 2. Accordingly, we will use the state U and a suitable

ordinary transmission state. The orientation of the latter has to bear

a certain relation to the orientation of the linear array L. Specifically,

in view of the way in which we will use L, it is desirable that the

orientation of this transmission state be transversal to the direction

of L. The latter will be horizontal. Accordingly, it will be found con-

venient to orient the transmission state vertically down, that is, to

use the state io. (io represents in this case the unexcited form of that

state, i.e., T030 ; cf. Sec. 2.8.2.) In order to have a firm relationship

to the binary notation, we stipulate that U correspond to the digit 0,

and 10 to the digit 1.

The linear array L should therefore be thought of as a sequence of

cells xn , n = 0, 1, 2, • • •
, which form a continuous horizontal line,

and for each of which the two states U, 10 are available. With each

xn we associate a numerical variable £„ , which designates the binary

digit represented by xn . Thus, £n = 0 indicates that xn is U, £n = 1

indicates that xn is io. Strictly, the length of L should be finite; i.e.,

the range of n should terminate, say immediately before N: n = 0,

1, • • •
, N — 1 . In any case, it is best to assume that for sufficiently

large n, £n = 0. In view of this, the end of L merges into the field of

U's that we expect to find outside the specifically constructed organs.

It is therefore not important in what way L is actually terminated.

In order to make this external memory L useful, the ancillary

networks referred to above must be provided; that is, it is necessary to

construct the means for "exploring" L. This "exploration" includes

reading L at any prescribed place, and also altering it in any desired

way at any prescribed place.
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We are therefore passing to the discussion of these manipulations

on L: reading and altering at assigned locations.

4.1.3 The constructing unit CU and the memory control MC. 1

Read-

ing L at an assigned location, say n, means to observe the value of

£n . Altering it there means to change it from its present value,
(fn , to

its next value, £n
'.

It is convenient to use an index 8 (s = 0, 1, 2, • • • ) to enumerate

the successive applications of this step. Hence the present value of a

£n will be designated by £n
&

, and its next value by £n
8+1

. Thus fn
*+1

replaces the £n
' that was used above.

The n involved in both operations (reading and altering), too,

depends on s, and this dependence must be shown explicitly. Let

therefore n
s
be the n used in the above sense at step number s.

The number n may be specified absolutely or relatively. The latter

will prove to be the preferable alternative. By this we mean the

following. It is not convenient—and if logical generality is absolutely

insisted on, it is not even possible—to limit the size of n (or of N\
cf. above). Hence, the number of binary digits of n is not limited

either. Consequently, n cannot be (or cannot be conveniently) held

"inside" the logical automaton, i.e., in its first main part according

to the partition defined in Section 4.1.2. On the other hand, it would

be very inconvenient to hold n in the second main part, i.e., in the

unlimited "outside" memory L. In other words, it is undesirable at

this stage of our automaton development (although we will do it

later on, when the integration of our automaton will have progressed

further) to use L itself for "addressing" within L. These two un-

desirable alternatives exclude between them the possibility of direct

addressing, i.e., of "absolute" specification of n. The plausible proce-

dure is therefore to use "relative" specification of n. That is, each

time when it becomes necessary to specify n, we will not do this

directly, but rather by stating how the n to be used is related to the

n used immediately before. It suffices to allow for changing n at each

such unit time step by a single unit.
2
In other words, the n to be

considered, n, will always be related to the one considered imme-

diately before it, n
5-1

,
by

(17') n
s = n

8'1 + e
s

(e
s = ±1).

1 [Von Neumann did not have titles for these two units but merely called

them "A" and "B", though the units are not the same as his A and B of Sec.

1.6. His title for the present subsection was "The detailed functioning of L.

The networks A and B. The function of A and its relationship to B."]
2 Turing, "On Computable Numbers, With an Application to the Ent-

scheidungsproblem."
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The "relative" specification then consists of stating which of its

two possible values t assumes, i.e., whether e = 1 or e = —1.

Let us now reconsider the two main parts into which the general

logical automaton was divided in Section 4.1.2. We can now make this

division more precise while reformulating it with some changes. The

first part is the network that carries out the elementary logical func-

tions and combines them to form general logical propositional func-

tions. Let this part be designated by CU. The second part is the ex-

ternal memory L, and the network that is needed to control and to

exploit L. Let the latter be designated by MC. Thus the second part,

in the sense of Section 4.1.2, is L plus MC. We can now define the

respective functions of CU and MC more precisely than heretofore.

[Fig. 37 shows the relation of the memory control MC to the linear

array L, the connecting loop Ci , and the timing loop C2 .]

We know that the function of the memory control MC is to read

and to alter L at assigned locations. We saw above what this involves

specifically. Given e
8

, MC must replace n~ l

by n according to equa-

tion (17'); it must sense the %
s

n » ; and given f£t\ it must replace

£n» by i^
1

. The only portions of this definition that require further

explanation are those relating to the "given e
s
" and the "given

£nt* ". That is, we must specify by what processes e and ijnt
1

are to

be obtained.

It is best to attribute this function (the obtaining of e and

to the constructing unit CU. The unit CU must form them as a

function of its own previous state, and of the information obtained

in the process. The latter is, of course, the reading of %
8

n « that is per-

formed by the memory control.

The reading of £n« by MC occurs after the formation of e
s

,
i.e., of

n {according to equation (17')}, but before the formation of It

must therefore affect the latter, but not the former. However, it is

preferable to transpose these operations, i.e., to describe the forma-

tion of n
s+1

from n\ rather than that of n from n~l

. This means

replacing s by s + 1 in equation (17'), i.e., replacing (17') by

(18') n
s+1 = n

s + e
s+1

(e
sfl - ±1).

Now we can define the functioning of units CU and MC as follows

:

CU first gives a "start" pulse to MC, thereby starting MC on step

number s (if this is the step that has been reached at this point ) . The
memory control MC then reads and communicates the result of

this reading to the constructing unit CU. This new information

changes the state of CU. The unit CU thereupon forms i^t
1
and e

s+1

and communicates these to MC. The unit MC now changes %
s

n » into
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i^t
1

; then MC forms n +]
according to equation (18') and establishes

the same contact with n
s+1

(i.e., with xn *+i in L) that it had previously

with n (i.e., with xn s in L). This concludes step number s. The mem-
ory control MC communicates this fact to CU. If it is so prescribed

for the state in which CU is at that point, CU then gives the next

"start" pulse to MC, thereby starting MC on step number s+l,
etc., etc.

For the time being, we wish to give only a schematic description

of the constructing unit CU. It suffices therefore to say that CU,
being a finite network, has only a finite number of states, say a. Let

these states be enumerated by an index a = 1, • • •
, a. Let the state

of CU at the beginning of step number s be a.

Then the relevant facts involving CU and its relationship to MC
are contained in these specifications:

(19'.a) <

(19\b)

(19'.c)

(19'.d)

If CU is in the state a\ and MC communicates to

it a value , then CU goes over into the state
s+l • v

a
,
given by

a = A (a, £n«)«

If CU is in the state a
s+1

, then it forms (and

communicates to MC) the i^t
1

given by

& 1 = X(as+1
).

If CU is in the state a
s+

\ then it forms (and

communicates to MC) the e
s+1

given by

S+l 77T/
e = lii \a ).

CU delivers the "start" pulse for step number s to

MC if and only if its state a lies in the subset $ of the a.

Thus the three functions

(20'.a)
A(a, {) (a = 1,

(20'.b)

(20'.c)

and the set

(20'.d) S

X(a)

E(a)

(a = 1,

(a = 1,

• •

,
a; % = 0, 1 ; values of A =

a; values of X = 0, 1 )

,

a; values of E = d=l),

(subset of the set of all a = a),

contain the operational description of CU and of its relationship to

MC, insofar as these are relevant for our immediate purposes. Later
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on, we will describe CU in detail,
3
but for the present the above

description suffices. Our present task is to perform complete and

detailed construction of MC, including its connections with CU.

4.1 4 Restatement of the postulates concerning the constructing unit

CU and the memory control MC. Let us restate the postulated func-

tioning of CU and MC:
(1) CU and MC are assumed to have reached the beginning of step

number s. CU is in the state a\ MC is connected to the cell

xn * in L.

(2) If a is not in S, then CU will not communicate further with MC.
If a is in S, then CU gives a "start" pulse to MC. The "start"

pulse initiates the events of step number s.

(3) MC reads the state of xn *
,

i.e., the value of ££• , and communi-

cates this to CU.

(4) CU then forms a
s+1

according to (19 .a), and goes into the state
«+l

a

(5) CU then forms fjt
1
and €

s+1
according to (19'.b) and (19'.c) and

communicates these to MC.
(6) MC changes xn » , as required to change £n« into £nt\

(7) MC then forms n
s+1 = n + e

s+1
{cf. equation (18')} and estab-

lishes its connection with xn »+i ,
relinquishing its connection

with xn * . That is, it moves its connection within L one square

forward if e
s+1 = 1, and one square back if e

s+1 = —1.

(8) Finally, MC gives a "completion" signal to CU.

(9) Now step number s is completed and step number s + 1 begins.

The cycle therefore resumes with postulate (1) above, etc., etc.

Since we wish to give only a schematic description of CU at this

stage (cf. Sec. 4.1.2), the purely formal statements of postulates

(1), (2), (4), (5), concerning CU will suffice for the time being. The
statements of postulates (1), (2), (3), (6), (7), (8), on the other

hand, concern MC, and our present task is to carry out an effective

and detailed construction of MC. Hence these last mentioned state-

ments must be implemented by actual constructions. We will do this

in Sections 4.1.5-4.1.7, which follow.

4.1.5 The modus operandi of the memory control MC on the linear

array L. We must first define the nature of the "connection" between

MC and a specific cell xn in L, as used in postulate (1) {for n = n]

and postulate (7) {for n = ns+l
] above. This connection must be

such that it makes the "reading" of xn by MC possible {cf. postulate

(3), with n = n\, as well as the changing of xn by MC {cf. postulate

3 [Von Neumann never reached the part of the manuscript where he planned
to design the constructing unit CU. See Chapter 5 below.]
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(6) , with n = n). It must also be possible to move this connection,

operating from MC, one square forward or backward {cf. postulate

(7) 1.

The linear array L is a linear sequence of cells xn , n = 0, 1, 2, • • •
.

We assume it to be horizontal, extending, and numbered, from left

to right, as shown in Figure 31a. We assume furthermore that MC
lies to the left of L, as shown in the same figure.

The obvious way for reading cell xn {with n = n; cf. postulate (3)

in Sec. 4.1.4} consists of having a line of ordinary transmission states

leading to it from MC, and then back from it to MC. We place the

line from MC to xn on the upper side of L and the line from xn back

to MC on the lower side of L. Together with xn these form a loop

from MC to MC, to be called the connecting loop and to be desig-

nated Ci , as shown in Figure 31b. Now cell xn can be "read" by
sending a stimulus into the Ci loop at its entry Vi , and observing

what emerges at its exit W\ . If xn is U (i.e., £n
s = 0) then the stimulus

will not be able to pass through xn (i.e., no response will appear at

Wi). If xn is io (i.e., £n
s = 1) then the stimulus will pass through

xn (i.e., a response will appear at W\).

Note that the stimulus coming from vx through Ci will nevertheless

affect xn if it is U (i.e., if £n
s = 0). It will transfer xn into the sensi-

tized state S0 (cf. Sec. 2.8 for this and for all subsequent discussions

of transitions between states). If nothing further happened, xn would

then go from the state Se spontaneously through certain successive

states, the complete sequence being

(21 ) U —
> S0 —> So — Soo — Sooo —> Soooo = Tooo = ^.

Now, it is preferable to have xn terminate in the same state in which

it would have been otherwise (i.e., if £n
s = 1 had held instead of

%n = 0), namely, the state 1<>. The reason for this is that our sub-

sequent operations with xn can be organized more simply if they are

known to start with a fixed state of xn under all conditions. The
state is T030

,
i.e., Soio . Hence the original stimulus (which trans-

ferred xn from U into S ) should be followed by the stimulus-no-

stimulus sequence 010. Hence a total sequence 1010 (at ^i) is called

for.

Injecting 1010 at vx thus transforms xn , in the case £„* = 0, succes-

sively according to

(22 ) U —
> S0 —> So — Soi — Soio = To3o = 1°.

Since the io appears at the end, none of these stimuli is able to pass
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through xn , so no response appears at W\ . In the case £n
a = 1, on

the other hand, xn is 1<>; hence it is not modified, and all stimuli

pass through it, so that the response at wx is 1010. To sum up, in-

jecting 1010 at Vi leaves xn at the end in any case in the state, !<> and

it produces at W\ no response or the response 1010, for %n
s = 0, 1,

respectively.

This procedure still has one shortcoming: the criterion of "no

response at Wi ," which appears here as the characteristic of £n
s = 0,

is meaningless if it is not known at what time this "no response' ' at

Wi is expected, since there is equally no response at wi at other times,

when vi has not been "questioned " (stimulated). This means that

the delay from v\ to Wi must be established by other means. This will

be needed for other purposes, too, and it will be achieved with the

help of the so-called timing loop (cf. later). However, for the present

purpose the desired result can be secured more simply by a direct

procedure, and we are therefore choosing this procedure.

Indeed, it suffices to add one more stimulus to the input sequence

1010 at Vi
,

i.e., to use the sequence 10101 there. The cell xn will be

in any event in the state lo before the last stimulus; hence this

stimulus will pass, appear at W\ , and still leave xn in the state I©.

Thus injecting 10101 at v\ leaves xn at the end in any case in the state

lo, and it produces at w\ the response 1 or 10101 for £n
* = 0, 1, re-

spectively.

If the input 10101 at vi is followed by 00, then for £n
s = 0 the I

at Wi is also followed by 00, and since this 1 is certainly preceded by

0000 (cf. above), we have for £n
s = 0 the sequence 0000100 at wx .

This sequence cannot overlap with a sequence 10101 (which corre-

sponds to & = 1 ) . Hence the response at wx times itself and discrimi-

nates unambiguously between £„
s = 0 and £„

s = 1. The organ which

effects this discrimination is our 1 vs. 10101 discriminator (organ

¥of Fig. 25).

Thus the problem of reading xn (with n = n) is solved, and the

outline of the construction of a network to implement this procedure

is clear. (For the actual construction, cf . later.

)

[ The operation of inserting the sequence 10101 is the first of a

complicated sequence of operations involving the linear array L,

the connecting loop Ci , and the timing loop C2 . The remaining

operations are developed in the balance of the present section (4.1)

and the next section (4.2), and are summarized in Figure 38 of Sec-

tion 4.3.2. See also Figure 37.

When von Neumann's design is finished, the following sequence of

operations will be used to read from and write in cell xn of L, and to
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lengthen (or shorten) the connecting loop Ci and the timing loop C2

preparatory to reading cell xn+i (or cell xn-i):

(1) Read cell xn with the sequence 10101, leaving it in state lo.

(2) Lengthen (or shorten) the timing loop C2 ,
using the connecting

loop Ci to time this operation.

(3) Lengthen (or shorten) the bottom of the connecting loop Ci
,

using the timing loop C2 to time this operation.

(4) Change cell xn to U if necessary.

(5) Lengthen (or shorten) the top of the connecting loop Ci
,
using

the timing loop C2 to time this operation.]

4J S The connecting loop Ci . The connecting loop Ci , as defined

above, must also handle the problem of altering xn (with n = n; cf.

postulate (6) in Sec. 4.1.4), that is, of transferring xn from that

state U, lo, which corresponds to £n
s = 0, 1, respectively, into that

one which corresponds to £n
s+1 = 0, 1, respectively.

It is natural, as well as simplest, to perform this transformation of

xn immediately after reading it according to Section 4.1.5. However,

we will see later that this conflicts with some other desiderata, and

we will therefore depart from this arrangement. Nevertheless, it is

instructive to carry out a preliminary discussion of the altering of

xn based on this assumption, to be corrected later on.

Consider, accordingly, the process of altering Xn , as if it took

place immediately after the "reading" of xn . At that moment xn is

certainly in the state lo (cf. above), which simplifies the task some-

what. Indeed, it is now only necessary to distinguish between two

cases: £n
s =1, in which case Xn is already in the desired state and

nothing need be done; £n
s+1 = 0, in which case xn must be transferred

from lo to U. (If xn had not been altered from its original form, there

would be three distinct cases, as follows. First, & = £»
f+1

{
= 0, 1;

it is irrelevant which}, and nothing need be done. Second, £n
* = 1,

£n
s+1 = 0, and xn must be transferred from 1© to U. Third, £n

s = 0,

£n
s+1 = 1, and xn must be transferred from U to lo.)

Thus the only operational problem that has to be considered here,

is that of transferring xn from lo to U. Since lo is an ordinary trans-

mission state, this cannot be done with ordinary stimuli. Hence we
have the problem of bringing special stimuli into the proper contact

with xn .

This can be done in the following manner. Let a special transmis-

sion state be in direct contact with the first °* in Ci ,
i.e., the one next

to Vi and above xo . This can be done by placing a state 1 1 immedi-

ately above the °> in question, i.e., at the asterisk in Figure 31b. Now
a special stimulus from the asterisk will transfer the °* in question
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(i.e., the one above x0 ) into U. It is desirable to transfer this further

into the state i, which is Tioo (i.e., Son). Hence the original, special

stimulus should be followed by the stimulus-no-stimulus sequence

1011. These could be ordinary or special stimuli, since both kinds

have the same effect on the sensitized states. It is simplest to keep

the entire sequence of one kind, i.e., of special stimuli only. This

means, then, injecting a total sequence of special stimuli 11011 from

the asterisk. Hence the square above xq will be successively trans-

formed according to

(23 ) i —> U —>S# —> So —> Soi —> Son = Tioo — 1
>-

Now the square above xQ is a i. Hence a second sequence of special

stimuli 11011 injected from the asterisk will pass through the i above

Xq as special stimuli and hit the next °, i.e., the one above Xi . It will

therefore put this square through the successive transformations of

expression (23'), and in the end leave it as a i. Now the squares

above x0 and Xi are both in state L Hence a third sequence of special

stimuli 11011 injected from the asterisk will pass through the two

1 above x0 and Xi as special stimuli and hit the next °, i.e., the one

above x2 . It will therefore put this square through the successive

transformations of expression (23'), and in the end leave it in state

i. Now the squares above xq , X\ , and x2 are all in state i. Clearly

this process can be continued at will. After the injection of n sequences

of special stimuli 11011 from the asterisk, the n squares above xo
,

Xi ,
• • •

,
xn-i are all in state i.

At this point the procedure should be changed, since the square

above xn must be transformed so that it will direct a special stimulus

to xn , and not to the next ° (the one above xn +i). That is, it should

become a ii, which is Ti 3o (i.e., Sno). Therefore a sequence of special

stimuli 11110 should now be injected from the asterisk, transforming

the square above xn according to

(24') i -* U -> So -» Si -> Sn -> S110 = T130 = U.

Now we have a continuous chain of special transmission states from

the asterisk to xn ; hence we can transform xn . This is a transforma-

tion from lo to U, and a single special stimulus delivered from the

asterisk will induce this transformation.

Thus we need the following system of sequences of special stimuli

injected from the asterisk: n sequences 11011, followed by the se-

quence 111101 (this is, of course, 11110 and then 1). The subsequent

condition of Cx and L is shown in Figure 31c.

It is not desirable to leave the part of Ci that has been so modified
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(i.e., its upper line) in this condition. However, it is easy to return

it from its altered condition (in Fig. 31c) to its original condition (in

Fig. 31b), leaving xn in its altered condition (which is U). Indeed,

since the upper line of Ci now consists of special transmission states,

ordinary stimuli will do this. These can be injected at Vi . The n first

squares (above xo , Xi ,
• • •

,
xn-i) should be transformed from i into

ft, which is Tooo (i.e., Soooo). Hence n sequences of ordinary stimuli

110000 must be injected at vx . The first one will transform the square

above xq from i into ft, according to

(25 ) 1 1 —> U —> S# —»So — Soo — Sooo — Soooo — Tooo = 1 0 .

The second one will do the same to the square above xx ,
etc., etc.,

and the n-th will do the same to the square above zw-i . The square

above xn can now be transformed from ii into |o. This is T03o (i.e.,

S0io). Hence a sequence 11010 of ordinary stimuli must be injected

at vi . This will transform the square above xn according to

(26') H -> U -> S9 -> So -> Soi -> Soio = T03o = !<>.

Thus we need the following system of sequences of ordinary stimuli

injected at Vi : n sequences 110000, followed by the sequence 11010.

The subsequent condition of Ci and L is again that shown in Figure

31b, but with xn being U.

The above discussions show that ordinary as well as special stimuli

must be injected into Ci . It is desirable to control both kinds by
ordinary stimuli from memory control MC. This calls for no extra

arrangements for the ordinary stimuli to Ci
;
they can be injected

directly at v\ . However, further arrangements are needed for the

special stimuli to Q , which have to be injected from the asterisk

of Figures 31b and 31c. Thus there is need for an organ that converts

ordinary stimuli into special stimuli. We constructed such an organ

earlier for the purposes of the periodic pulser. It is shown in Figures

18g and 18i. The arrangement of Figure 18i is more convenient. Its

attachment to Ci and L is shown in Figure 3 Id. The input to this

subsidiary organ is designated by U\.

In this way we have a system where the original stimulations are

uniformly made by ordinary pulses either at ux or at Vi . The former

cause the injection of special pulses into Ci ; the latter inject directly

ordinary pulses into Ci—in both cases into the square above cell x0 .

We can now give the final form of the description of the treatment

that transfers xn from U into i o, and leaves everything else in Ci and

L in its previous condition:

(27 .a) Inject n sequences 11011 at U\ .
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(27'.b) Inject a sequence 111101 at ux .

(27'.c) Inject n sequences 110000 at vx .

(27'.d) Inject a sequence 11010 at Vi .

Jf.1.7 The timing loop C2 . The scheme of the previous subsection,

as summarized in rules (27 .a-27 .d) is still incomplete in one respect.

Rules (27'.a) and (27'.c) call for the n-fold repetition of certain

operations, injecting 11011 and 110000 at Ui and Vi ,
respectively.

This can be done with the periodic pulsers PP(llOll) and

PP (110000), but these must then be turned off with the delays 5n

and 6n, respectively, after they have been turned on. How are these

delays to be ascertained ?

Prima facie there would seem to be the same difficulty, connected

with the size of n, and its consequent unsuitability for storage "in-

side" MC, which we observed at the beginning of Section 4.1.3.

This difficulty can be overcome by essentially the same device: rela-

tive instead of absolute definition of n. However, it is impractical

to sense n, with our present arrangements, on L itself. It is therefore

necessary to introduce a second "outside" organ to store n—or

rather to express it in so explicit a manner that its sensing for the

above purposes becomes immediately feasible. The best way to do

this seems to be the introduction of another loop from MC to MC,
whose length each way is n, or n plus a fixed amount. That is, we
assume that there is, at a suitable distance below L and parallel to

it, a sequence of n ordinary transmission states ° leading out from

MC, this sequence being terminated by an ordinary transmission

state 1 o, and immediately under this another line of n + 1 ordinary

transmission states 1 leading back to MC. We position these below

the squares x 0 , Xi ,
• • •

,
xn of L. This will be called the timing loop

and designated C2 , as shown in Figure 31e. Clearly a stimulus injected

into the timing loop at its input v2 will reappear at its output w2 with

a delay of 2n + 2. It will appear later on that it is desirable to pro-

vide C2 with the same additional facilities for the injection of special

stimuli, as were provided for Ci . Hence we place again the equivalent

of Figure 18i above the t under Xq , and designate its input by u2 .

This arrangement defines the distance from Ci to C2 and the position

of both relatively to MC, as shown in Figure 31f.

Since the delay from v2 to w2 is 2n + 2, the delay three times around

this loop is 6n + 6. This differs from the delay 6n, required in con-

nection with operation (27'.c) of Section 4.1.6 by 6, which is a fixed

amount (i.e., independent of n). Hence it can be used to define the

delay called for in connection with operation (27'.c), subject only
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to the insertion of suitable fixed delays, which is feasible "inside"

MC.
The delay required in connection with operation (27'.a) of Section

4.1.6 is 5n, and no integer multiple of 2n + 2 differs from this by a

fixed amount (i.e., by one that is independent of n). This difficulty

can be circumvented by adding a 0 (i.e., a "no stimulus") to the

sequence 11011 in operation (27 .a). This gives the sequence 110110;

i.e., it replaces operation (27 .a) as follows:

(27'. a') Inject n sequences 110110 at u\ .

Now operation (27'.a'), too, requires a delay 6n; i.e., it can be treated

precisely like operation (27 .c).

The sensing of three trips around the timing loop can be effected

with the triple-return counter. This organ <£ is shown in Figure 23.

Its output d must then be attached to v2 and its input c to w2 . Let

the delay from d to v2 be b2 and the delay from w2 to c be b2 . In the

terminology of Section 3.4, then, 12 is the line from d to v2 ,
plus C2

from v2 to w2 ,
plus the line from w2 to c. Hence the delay from c

through 12 to d is b2 + (2n + 2) + b2 . Consequently, according to

the end of Section 3.4 and Figure 24d, the delay from a through <i>

(and 12) to b is 238 + 3(6/ + (2n + 2) + b2 ) = 6n + (3(S2 ' +
b2 ) + 244). This exceeds the delay 6n, called for in connection with

rules (27\a) and (27'.c), by 3(S2
' + b2 ) + 244, which is a fixed

amount (i.e., independent of n). Hence this can be adjusted for by
suitable fixed delays that can be provided "inside" the memory
control MC.

4.2 Lengthening and Shortening Loops Ci and C 2 ,

and Writing in the Linear Array L

4.2.1 Moving the connection on L. There remains one more problem

for our preliminary consideration: that of moving the connection of

MC with L one square forward or backward (cf. postulate (7) in

Sec. 4.1.4).

This means lengthening or shortening both lines of the connecting

loop Ci by one square. Now we saw in Section 4.1.6 that the timing

loop C2 is expected to have the same length as the connecting loop

Ci . Hence both lines of C2 ,
too, must be lengthened or shortened

by one square.

It is desirable to perform these operations at a time when Ci forms

an uninterrupted loop, from Vi to wi . (The loop C2 is normally un-

interrupted from v2 to w2 .) This is the case when xn is in state I».

We saw at the end of Section 4.1.5 and the beginning of Section 4.1.6
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that this can be guaranteed during the period between the reading

and the altering of xn • (The reading necessarily precedes the alter-

ing. ) We will therefore perform the operations in question (lengthen-

ing or shortening each line of Ci and of C2 by one square) during this

period.

Beyond this point the two alternatives (e
s+1 = 1, lengthening, and

e
s+1 = —1, shortening) are better considered separately.

[ The general process to be carried out is that of altering the loops

Ci and C2 at their ends, and perhaps modifying the contents of the

storage cell xn . The procedure for doing this was illustrated in Figure

14 of Section 2.8.3. The construction path is changed back and forth

between a path of ordinary transmission states and a path of special

transmission states. A path of ordinary transmission states is con-

verted into a path of special transmission states by means of special

stimuli, and a path of special transmission states is converted into a

path of ordinary transmission states by means of ordinary stimuli.

The following inputs are used : ux and vx for Q , and and v2 for

C2 . See Figures 31-37 and 39. A sequence of ordinary stimuli into

Ui changes the upper part of Ci into a path of special transmission

states, and a sequence of ordinary stimuli into V\ changes the upper

part of Ci back into a path of ordinary transmission states. Similarly

for u2 ,
v2 , and C2 .

The conversion of a cell from an ordinary transmission state to a

special transmission state (or vice-versa) takes six stimuli in the

worst case (see Fig. 10). Hence to change the path from vi to xn

from ordinary to special states (or vice-versa) requires approximately

6n pulses. Now n is an arbitrary finite number, and hence cannot

be stored in the finite automaton MC (or the finite automaton CU).
Von Neumann ingeniously solved this problem by introducing the

timing loop C2 .

The timing loop C2 is attached to a triple-return counter <£2 ; see

Figure 39. In the terminology of Section 3.4, the loop C2 is the re-

sponding organ £2 of the triple-return counter <J>2 . Three times the

delay around loop C2 is approximately the variable part of the needed

delay 6n. The desired sequence of pulses into ux or V\ is obtained from

periodic pulsers PP(iWi4i5i6 ) turned on for approximately this

period 6n. Similarly, the triple-return counter <£i of Figure 39 and

the loop Ci are used to time the sequence of pulses needed to modify

loop C2 . Finite sequences of pulses are needed for changing the ends

of Ci and C2 and writing in cell xn ; these are easily obtained from

pulsers.

Before the lengthening (or shortening) process begins, cell xn has
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been read by means of a sequence 10101 and has been left in the state

io (see Sec. 4.1.5). When von Neumann has finished his design the

following sequence of operations will be used to lengthen (or shorten)

the loops Ci and C2 and write in cell xn :

(1) Lengthen (or shorten) the timing loop C2 by means of periodic

pulsers and pulsers feeding into inputs u2 and v2 . The length of

time each periodic pulser is on is controlled by the triple-return

counter <f>i to which loop Ci is attached as its responding organ 12.

(2) Make the following modifications in loop Q and cell xn :

(a) Lengthen (or shorten) the bottom of loop Ci, gaining access

to it through cell xn so as not to disturb cells xn-i or xn +i .

(b) Leave cell xn in state U if a "zero" is to be stored; leave cell

xn in state i« if a "one" is to be stored.

(c) Lengthen (or shorten) the top of loop d .

The stimuli required for this process are fed into inputs Ui and

Vi from periodic pulsers and plain pulsers. The length of time

each periodic pulser is left on is controlled by the triple-return

counter $2 to which the loop C2 is now attached as its responding

organ 12.

At the end of these two steps cell xn is left in the desired state, the

connecting loop Ci passes through cell xn+i on the lengthening option

and through cell xn-i on the shortening option, and the timing loop

C2 is of the same length as loop Ci .

In Sections 4.2.2-4.2.4 von Neumann derived 31 formulas de-

scribing the sequences to be fed into loops Ci and C2 to accomplish

the purpose just described. These formulas are all summarized in

Table II on p. 235 below. They are numbered 28'.a through 3l'.h in

Sections 4.2.2-4.2.4 and renumbered 0.1 through 0.31 in Table II.

Table III on p. 236 below summarizes the periodic pulsers needed

to produce sequences repeated approximately n times and the excess

delays involved in timing these periodic pulsers by means of the

triple-return counters $i and <£2 and the loops Ci and C2 .

Table IV on p. 237 below summarizes the pulsers needed to produce

the fixed sequences called for by the formulas.

The reader may find it helpful to refer to Tables II-IV while read-

ing the rest of the present section.]

4.2.2 Lengthening on L. Consider first the case e
s+1 = 1 (lengthen-

ing). In performing this operation, n (orn + 1) ordinary transmis-

sion states (i on the upper lines of Ci and C2 , J? on the lower lines

of Ci and C2 ) must be transformed repeatedly into the corresponding

special transmission states (_i, J:, respectively), and conversely. This

requires arrangements like (27'.a') and (27 .c) (for the —* class),
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and others similar to these (for the <— class); hence there exists again

the necessity of measuring delays 6ft (or 6ft plus a fixed amount)

between the turning on and off of the periodic pulsers that are used.

While loop Ci is being worked on, these delay measurements can be

effected with the help of loop C2 (and the triple-return counter,

together with suitable fixed delays; cf. Sec. 4.1.7). While loop C2

is being worked on, it is plausible to use loop Ci for the same purpose

(with similar auxiliary equipment). This is a reason why Ci should

at this time form an uninterrupted loop (from MC to MC), i.e.,

why cell xn should be in state 1© (cf. above). We know that this

condition is satisfied when our present procedure begins; hence the

operations on loop C2 should be the first ones that are undertaken

(before those on loop Q )

.

Thus our first task is to lengthen both lines of loop C2 by one square.

This is best begun by transforming the entire upper line of C2 (the

squares of C2 under Xq , X\ ,
• • •

, xn—their number is n + 1 ) into

i, i.e., from its original condition in Figure 32a into that of Figure

32b. Since these squares are originally °, i.e., ordinary states, special

stimuli are required. We saw in Section 4.1.6 {cf. the discussion of

operation (23')} that each transformation requires the stimulus-no-

stimulus sequence 11011, or, according to Section 4.1.7 {cf. the passage

from operation (27'.a) to operation (27'. a')}, the stimulus-no-stimu-

lus sequence 110110. Hence we have this requirement:

(28'.a) Inject n + 1 sequences 110110 at u2 .

Note that this calls for a PP (110110), with a delay 6ft + 6 between

turning on and off. It is appropriate to attach a triple-return counter

<£ (cf. Fig. 24) to loop Ci , since the latter is now being used for tim-

ing. Hence we attach the output d of <£ to V\ and the input c of 3> to

Wi . Let the delay from d to Vi be 5/, and the delay from w\ to c be

Si". The delay from Vi through loop Ci to Wi is 2n + 3. In the termi-

nology of Section 3.4, Q, is the path from d to vx ,
plus Ci from vi to

Wi
,
plus the path from w\ to c. Hence the delay from d through 12

to c is S/ + (2n + 3) + 5i". Consequently, according to the end of

Section 3.4 and Figure 24 the delay from a through $ (and 12) to b is

238 + 3(5/ + (2n + 3) + 5/') = 6ft + (3(5/ + 5/') + 247). This

exceeds the delay 6ft + 6, called for in connection with rule (28 .a),

by 3(5/ + 5/ ) + 241, which is a fixed amount (i.e., independent of

ft). Hence this can be adjusted by suitable fixed delays, that can be

provided "inside" MC.
Next we transform the square to the right of the last i (which is

U) into li, and the square under this (which is also U) into Z-] i.e.,
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we go from Figure 32b to Figure 32c. The state li is Ti 30 (i.e., Sn 0 )

and the state 1 is T020 (i.e., S001). Hence the sequences 1110 and 1001

of special stimuli are needed, i.e.

:

(28'.b) Inject the sequence 11101001 at u2 .

Now the lower line of the timing loop C2 is in its desired condition,

and there remains the task of dealing with the upper line. This begins

by transforming all of it, except its last square (i.e., the squares under

£0 , Xi ,
• • •

, xn—their number is n + 1 ) into state t. This loop C2 is

transformed from its condition in Figure 32c into that of Figure 32d.

Since the cells to be changed are in state ordinary stimuli are re-

quired. We saw in Section 4.1.6 {cf. the discussion of operation (25')}

that each transformation requires the stimulus-no-stimulus sequence

110000. Hence we have this requirement:

(28'.c) Inject n + 1 sequences 110000 at v2 .

This calls for a PP (110000), with a delay 6n + 6 between turning

on and off. The same triple-return counter <i>, attached to Ci , that we
used in connection with operation (28'.a), can take care of this delay

too. The details are the same as in the discussion after operation

(28'.a); i.e., the delay from a to b {cf. that discussion and Fig. 24}

exceeds the desired delay by 3(5/ + 6/') + 241, which, being fixed,

calls for adjustments that can be provided "inside" MC.
Finally, we transform the square to the right of the last t, (which

is li) into i<>; i.e., we go from Figure 32d to Figure 32e. The state 1<>

is T030 (i.e., S010). Hence the sequence 11010 of ordinary stimuli is

needed

:

(28'.d) Inject the sequence 11010 at v2 .

This completes the lengthening of the timing loop C2 . We must now
perform the corresponding operation on the connecting loop Ci .

The state of loop Ci is shown in Figure 33a. It is best to begin the

lengthening operation on the lower line of Q , the access to it being

obtained through the upper line of Ci and the state 1 0 at the place of

xn . We transform accordingly the entire upper line, except its last

square (the squares above Xo , X\ ,
• • •

,
xn-r—their number is n)

into L. That is, we transform the upper line of Ci from its condition

in Figure 33a into that of Figure 33b. Since these squares are i (i.e.,

ordinary states), special stimuli are required. Just as for operation

(27'.a') {or operation (28'.a)}, each transformation requires the

sequence 110110. Hence:

(29'.a) Inject n sequences 110110 at ux .
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This calls for a PP(llOllO), with a delay 6n between turning on

and turning off. The timing can be achieved with a triple-return

counter tied to Vz ,
w2 (with its d, c, respectively), precisely as in the

discussion after operation (27'.a'). However, the length of C2 is

now 1 unit greater than it was there; hence the delay through C2

is increased by 2, and the delay 3 times through C2 is increased by 6.

Hence the fixed excess delay, which must be compensated by adjust-

ments "inside" the memory control MC, is increased by 6; i.e., it

is now 3 (5/ + 52") + 250.

Next we transform the square to the right of the last i. (which is

lo) into li, the square under this (which is also lo) also into H,

the square under this (which is 1) into i (these three are the square

above, at, and under the place of xn ), and the square to the right of

this (which is U) into l_; i.e., we go from Figure 33b to Figure 33c.

The state li is Ti30 (i.e., Suo), I is Ti 00 (i. e., Son ), 1 is T020 (i.e.,

Sooi). Hence the sequences 11110, 11110, 11011, 1001 of special

stimuli are needed, i.e.:

Now we may restore the squares at and below the place of xn to

their final condition. We must again get in through the upper line.

Hence we transform all of it, except its last square (the squares above

Xq , Xi ,
• • •

,
xn-i—their number is n) into °; i.e., we go from Figure

33c to Figure 33d. Since the affected part of the upper line now con-

sists of special transmission states, ordinary stimuli will do this. Just

as for operation (27'.c), each transformation requires the sequence

This calls for a PP (110000), with a delay 6n between turning on

and turning off. It can be handled by the same timing arrangements

used for operation (29'.a).

Next we transform the square to the right of the last i (which is

1
1 ) into 1 o, the square under this (which is also I i ) into i o, and the

square under this (which is i) into J_ (these three are the squares

above, at, and under the place of xn ); i.e., we go from Figure 33d to

Figure 33e. The state |o is T03o (i.e., Soio), 1 is T020 (i.e., Sooi). Hence

the sequences 11010, 11010, 11001 of ordinary stimuli are needed,

i.e.:

110000, i.e.:

(29'.c) Inject n sequences 110000 at Vi .

(29'.d) Inject the sequence 110101101011001 at vx .
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Now we can carry out the lengthening of the upper line of Ci . We
begin by transforming the entire upper line (the squares above xo ,

x\ ,
• • •

,
xn—their number is n + 1) into i; i.e., we go from Figure

33e to Figure 33f. Since the upper line now consists of ordinary trans-

mission states, special stimuli will do this. Just as for operation

(29'.a), each transformation requires the sequence 110110, i.e.:

(29\e) Inject n + 1 sequences 110110 at ux .

This calls for a PP(llOllO), with a delay 6n + 6 between turning

on and turning off. It can be handled by the same timing arrange-

ments used for operation (29 .a), except that the delay to be timed

is now longer by 6. Hence the fixed excess delay, which must be

compensated by adjustments "inside" the memory control MC, is

decreased by 6; i.e., it is now 3 (82 + 82 ) + 244.

Next we transform the square to the right of the last ! (which is

U) into 10; i.e., we go from Figure 33f to Figure 33g. The state l« is

T030 (i.e., S010). Hence the sequence 1010 of special stimuli is needed,

i.e.:

(29'. f) Inject the sequence 1010 at ux .

Finally we transform the balance of the upper line (the squares

above xq , Xi ,
• • •

, xn—their number is n + 1) into °>; i.e., we go

from Figure 33g to Figure 33h. Since the affected part of the upper

line now consists of special transmission states, ordinary stimuli will

do this. Just as for operation (27'.c), each transformation requires

the sequence 110000, i.e.:

(29'.g) Inject n + 1 sequences 110000 at vx .

This calls for a PP (110000), with a delay 6n + 6 between turning

on and turning off. It can be handled by the same timing arrange-

ments used for operation (29 .e).

This completes the lengthening of the connecting loop Q ,
i.e.,

the entire first case, e
s+1 = 1.

4.2.3 Shortening on L. Consider now the case e
s+1 = — 1 (shorten-

ing). The treatment runs, in its main outline, parallel to that of the

first case. Hence the operations on C2 should again be undertaken

first (before those on Ci).

Thus our first task is to shorten both lines of C2 by one square.

This is best begun by transforming the entire upper line of C2
,
except

its last square (i.e., the squares under xo , Xi ,
• • •

,
xn-i—their num-

ber is n) into i.e., from its original condition in Figure 32a into

that of Figure 34a. Since these squares are originally t (i.e., ordinary
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states), special stimuli will do this. Just as for transformation (29'.a),

each transformation requires the sequence 110110, i.e.:

(30'.a) Inject n sequences 110110 at u2 .

This calls for a PP(llOllO), with a delay 6n between the turning

on and turning off. It can be handled by the same timing arrange-

ments that take care of operation (28 .a), except that the delay to

be timed is now shorter by 6. Hence the fixed excess delay, which

must be compensated by adjustments "inside" the memory control

MC, is increased by 6; i.e., it is now 3(5/ + O + 247.

Next we transform the square to the right of the last i (which is

lo) into |i, and the square under this (which is 1) into U; i.e., we go

from Figure 34a to Figure 34b. The state U is Ti30 (i.e., Sn 0 ). Hence

the sequences 11110 and 1 of special stimuli are needed, i.e.:

(30'.b) Inject the sequence 111101 at u2 .

Now we restore the upper line of C2
,
except its last square (i.e.,

the squares under x0 , X\ ,
• • •

, xn-i—their number is n) into °; i.e.,

we go from Figure 34b to Figure 34c. Since these squares are now
special transmission states, ordinary stimuli will do this just as for

operation (27'.c). Hence each transformation requires the sequence

110000, i.e.:

(30'.c) Inject n sequences 110000 at v2 .

This calls for a PP (110000), with a delay 6n between turning on

and turning off. It can be handled with the same timing arrange-

ments that take care of operation (30 .a).

Next we transform the square to the right of the last t (which is

i 1) into U; i.e., we go from Figure 34c to Figure 34d. For this a single

ordinary stimulus is needed, i.e.

:

(30'.d) Inject a single stimulus at v2 .

At this point the shortening of C2 is effected, since the two right-

most squares have been transformed into U's, but the rightmost

square of what is left of the upper line (the one under av-i) is not in

the desired state (it is ° instead of lo). We go on to correct this.

We transform the upper line, except its last square (the squares

under —their number is n — 1) into i; i.e., we go

from Figure 34d to Figure 34e. Since these squares are now ordinary

transmission states, special stimuli will do this. Just as for operation

(29'.a), each transformation requires the sequence 110110, i.e.:

(30'.e) Inject n — 1 sequences 110110 at u2 .
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This calls for a PP(IlOllO), with a delay On — (> between turning

on and turning off. It can be handled by the same timing arrange-

ments that take care of operation (30'.a), except that the delay to

be timed is now shorter by 6. Hence the fixed excess delay, which

must be compensated by adjustments "inside" MC, is increased by

6; i.e., it is now 3(5/ + Si") + 253.

Next we transform the square to the right of the last L (which is

°) into 1»; i.e., we go from Figure 34e to Figure 34f. The state lo is

Toso (i.e., Soio). Hence the sequence 11010 of special stimuli is needed,

i.e.:

(30'.f) Inject the sequence 11010 at u2 .

Finally we transform the balance of the upper line (the squares

under Xq , X\ ,
• • •

, xn-2—their number is n — 1) into °>; i.e., we go

from Figure 34f to Figure 34g. Since the affected part of the upper

line consists now of special transmission states, ordinary stimuli will

do this. Just as for operation (27'. c), each transformation requires

the sequence 110000, i.e.:

(30'.g) Inject n — 1 sequences 110000 at v2 .

This calls for a PP (110000), with a delay 6n — 6 between turning

on and turning off. It can be handled by the same timing arrange-

ments that take care of operation (30 .e).

This completes the shortening of C2 . We must now perform the

corresponding operation on Ci .

The state of Q is shown in Figure 33a. It is best to begin the short-

ening operation (just as we did the lengthening operation) on the

lower line of Ci , the access to it being obtained through the upper

line of Q and the 1<> at the place of xn . We transform accordingly

first the entire upper line, except its last square (the squares above

Xq , Xi ,
• • •

,
xn-i—their number is n) into i; i.e., from its condition

in Figure 33a into that in Figure 35a. Since these squares are ° (i.e.,

ordinary states), special stimuli are required. Just as for operation

(29'.a), each transformation requires the sequence 110110, i.e.:

(3l'.a) Inject n sequences 110110 at %h .

This calls for a PP (110110), with a delay 6n between turning on

and turning off. The timing can be achieved with the same means that

were used after operation (29'.a). However, the length of C2 is now 2

less than it was there; hence the delay through C2 is decreased by 4

and the delay three times through C2 is decreased by 12. Therefore,

the fixed excess delay, which must be compensated by adjustments
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"inside" the memory control MC, is decreased by 12; i.e., it is 3 (S2
' +

52") + 238.

Next we transform the square to the right of the last i (which is

10) into li, the square under this (which is also io) into U, and the

square under this (which is 1) into U (these three are the squares

above, at, and under the place of xn ); i.e., we go from Figure 35a to

Figure 35b. The state li is Ti3o (i.e., Sno ). Hence the sequences

11110, 11110, 1 of special stimuli are needed, i.e.:

(3l'.b) Inject the sequence 11110111101 at u\ .

Now we may restore the square at the place of xn to its final con-

dition. We must again get in through the upper line. Hence we trans-

form first all of it, except its last square (the squares above xo
,

Xi ,
• • •

,
xn-i—their number is n) into ?t; i.e., we go from Figure 35b

to Figure 35c. Since the affected part of the upper line now consists

of special transmission states, ordinary stimuli will do this. Just as

for operation (27'.c), each transformation requires the sequence

110000, i.e.:

(3l'.c) Inject n sequences 110000 at Vi .

This calls for a PP (110000), with a delay 6n between turning on

and turning off. It can be handled by the same timing arrangements

that take care of operation (31 .a).

Next we transform the square to the right of the last t (which is

1 1 ) into i o, and the square under this (which is also i i ) also into i o

(these two are the squares above and at the place of xn ); i.e., we go

from Figure 35c to Figure 35d. The state io is T030 (i.e., S010). Hence
the sequences 11010, 11010 of ordinary stimuli are needed; i.e.:

(3l'.d) Inject the sequence 1101011010 at vx .

Now we can carry out the shortening of the upper line of Ci . We
begin by transforming the entire upper line, except its last square

(the squares above xq
, Xi ,

• • •
,
xn-i—their number is n) into i; i.e.,

we go from Figure 35d to Figure 35e. Since the affected part of the

upper line consists now of ordinary states, special stimuli will do this.

Just as for operation (29'.a), each transformation requires the se-

quence 110110, i.e.:

(3l'.e) Inject n sequences 110110 at Ui .

This calls for a PP (110110), with a delay 6n between turning on

and turning off. It can be handled by the same timing arrangements

that take care of operation (31 '.a).
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Next we transform the square to the right of the last i (which is

lo) into U; i.e., we go from Figure 35e to Figure 35f. For this a single

special stimulus is needed, i.e.:

(31 i) Inject a single stimulus at u t .

At this point the shortening of G is effected, since the two right-

most squares have been transformed into IPs, but the upper line is

not in its desired state. We go on to correct this.

We transform the upper line, except its last square (the squares

above xq
,
X\ ,

• • •
, #n_2—their number is n — 1) into i; i.e., we go

from Figure 35f to Figure 35g. Since these squares are now special

transmission states, ordinary stimuli will do this. Just as for operation

(27'.c), each transformation requires the sequence 110000, i.e.:

(3l'.g) Inject n — 1 sequences 110000 at vi .

This calls for a PP (110000), with a delay 6n — 6 between turning

on and turning off. It can be handled by the same timing arrange-

ments that take care of operation (31 .a), except that the delay to be

timed is now shorter by 6. Hence the fixed excess delay, which must

be compensated by adjustments "inside" the memory control MC, is

increased by G; i.e., it is now 3(«2 + «2 ) + 244.

Finally, we transform the square to the right of the last ^ (which

is A) into 10; i.e., we go from Figure 35g to Figure 35h. The state io

is T030 (i.e., Soio). Hence the sequence 11010 of ordinary stimuli is

needed, i.e.:

(3l'.h) Inject the sequence 11010 at Vi .

This completes the shortening of the connecting loop Ci ,
i.e., the

entire second case, e
s+1 = — 1.

4.2.4 Altering xn in L. We must now reconsider the procedure of

altering xn , as discussed in Sections 4.1.6 and 4.1.7.

The assumption underlying the procedure of Sections 4.1.6 and

4.1.7 was that the altering of xn follows immediately upon the "read-

ing" of xn . However, in Sections 4.2.1-4.2.3 we carried out the length-

ening or the shortening of Ci and C2 as if it occurred between these

two, i.e., as if this lengthening or shortening followed immediately

upon the reading of xn . These two assumptions are in conflict, and

we now stipulate that the last mentioned assumption (i.e., the

assumption of Sees. 4.2.1 and 4.2.3) is valid. Hence Sections 4.1.6-

4.1.7 must be reconsidered.

The most natural procedure would be to review the changes that

the lengthening or shortening has produced in the relevant structures
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—i.e., to Ci , on which Sections 4.1.6-4.1.7 operate, and to C2 ,

which is used to time these operations—and to correct Sections 4.1.6-

4.1.7 to account for these changes. However, it is simpler to analyze

the procedures for the lengthening and the shortening themselves,

and to see in each case where the operations of Sections 4.1.6-4.1.7,

or equivalent ones, fit in best. It turns out that these insertions can

be effected with the help of considerably simplified variants of Sec-

tions 4.1.6-4.1.7.

The conclusion reached at the beginning of Section 4.1.6 still holds:

in the case = 1 nothing need be done, while in the case i^
-1 =

0, xn must be transferred from !» to U. Hence we need to consider

the latter case only. However, we must discuss the two main alterna-

tives (e
s+1 = 1, lengthening, and e

s+1 = — 1, shortening) separately.

Consider first the case e
s+1 = 1 (lengthening). We must decide

where to insert the process of altering xn from I o into U into the evolu-

tion of Ci according to Figures 33a-33h. It is easily seen that it fits

best after Figure 33e, involving a change of the evolution through

Figures 33f-33h, i.e., of the steps (29
,

.e)-(29
,

.g).

We modify the passage from Figure 33e to Figure 33f by transform-

ing one square less, i.e., into the passage from Figure 33e to Figure

36a. This reduces the number of iterations in operation (29'.e) by

one:

(29'.e
/

) Inject n sequences 110110 at Ui .

This calls for a PP (110110) with a delay 6n between turning on

and turning off. It can be handled by the same timing arrangements

that take care of operation (29'.a).

Next we transform the square to the right of the last -i (which is

lo) into 1 1, and the square under this (which is also 1«) into U (these

two are the squares above and at the place of xn )\ i.e., we go from

Figure 36a to Figure 36b. The state ii is Ti 3o (i.e., Sno). Hence the

sequences 11110, 1 of special stimuli are needed, i.e.:

(29'.f') Inject the sequence 111101 at U\ .

Now we transform the entire upper line (the squares above xo
,

Xi ,
• • •

, xn—their number is n + 1) into -S; i.e., we go from Figure

36b to Figure 36c. Since the upper line consists of special transmission

states, ordinary stimuli will do this. Just as for operation (27'.c),

each transformation requires the sequence 110000, i.e.:

(29'.g') Inject n + 1 sequences 110000 at vx .

This calls for a PP (110000) with a delay 6n + 6 between turning
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on and turning off. It can be handled by the same timing arrangements

that take care of operation (29'.e).

Finally we transform the square to the right of the last -°* (which

is U) into 10; i.e., we go from Figure 36c to Figure 36d. The state lo

is T030 (i.e., Soio). Hence the sequence 1010 of ordinary stimuli is

needed, i.e.:

(29'.h') Inject the sequence 1010 at Vi .

This completes the discussion of the first case, e
8+1 = 1.

Consider now the case e
s+1 = — 1 (shortening). We must decide

where to insert the process of altering io into U into the procedure of

Section 4.3.2, i.e., into the evolution of Ci according to Figures 33a

and 35a-35h. It is easily seen that it fits best after Figure 35c, but it

affects only the step from there to Figure 35d, i.e., the step (3l'.d).

Indeed, io at the place of xn was made from U; hence it suffices

to make U instead. That is, the second sequence mentioned before

step (3l'.d) {it is 11010} must be replaced by a single stimulus. Hence

operation (3l'.d) is replaced by this:

(3l'.d') Inject the sequence 110101 at vi .

Now the io at the place of xn is replaced by U in Figure 35d. After

this the evolution through Figures 35e-35h, i.e., the steps (3l'.e)-

(?>\
r

.Yi) can go on unchanged. In all Figures 35e-35h the only altera-

tion will be the same replacement of the 1 o at the place of xn by U,

and this has no effect on the operations mentioned above.

This completes the discussion of the second case, e
s+1 = —1.

4.3 The Memory Control MC
[ The organization and operation of MC. Figure 37 is a

schematic diagram of the memory control MC and the organs it

controls: the linear array L, the connecting loop Ci , and the timing

loop C2 . This figure is not drawn to scale; MC is actually 547 cells

high and 87 cells wide. We will first describe the organization of MC,
and then we will explain how MC operates.

The most important parts of MC are the read-write-erase unit

RWE and its control RWEC. The unit RWE is shown in Figure 39

and developed in Section 4.3.3. The organs marked "0.6," "0.10,"

etc., in Figure 39 are the pulsers of Tables III and IV. The pulser

marked "0.0" is a P (10101 ) which sends the sequence 10101 into

input Vi of loop Ci for the purpose of reading xn ; the result which

emerges from output Wi goes to the 1 vs. 10101 discriminator ^.

The triple-return counter <f>i has loop Ci as its secondary organ £2,
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and the triple-return counter 3>2 has loop C2 as its secondary organ.

The stimuli into RWE from the left come from decoders in CCi
,

and the stimuli going from RWE to the left go into pulsers in CCi .

The unit CQ of RWE is part of the coded channel of MC.
The coded channel of MC consists of CCi , CC2 ,

CC3 ,
X, Z, and

the main channel. The main channel goes from the solid circle to the

solid square. The unit CC2 contains decoders whose inputs come from

the main channel and whose outputs go into RWEC. The unit CC3

contains pulsers whose inputs come from RWEC and whose outputs

go to the main channel. The units X, Z, and CCi contain both de-

coders receiving their inputs from the main channel and pulsers

feeding their outputs into the main channel.

The read-write-erase control RWEC is shown in Figure 41 and de-

veloped in Section 4.3.5. It contains 16 control units CO; each CO
contains a PP(D which is active while that CO is in control (see

Fig. 40 and Sec. 4.3.4). The RWEC also contains four PP(T) which

are used to store the bit which is to be written in cell xn .

The inputs and outputs of RWEC are labeled to correspond to the

inputs and outputs of RWE. For example, a stimulus from vi-1 goes

into a pulser of CC3 which sends a coded sequence into the main

channel; this sequence is recognized by a decoder of CCi which sends

a pulse into input vi-1 of RWE, thereby stimulating the pulser

labeled "0.0" to send the sequence 10101 into V\ for reading cell xn .

The area Y of MC is used only to transfer stimuli from outputs

02 , 03 , and o5 of the constructing unit CU to pulsers in X, and to

transfer a stimulus from a decoder in X to input % of CU.
The area W has the following function. Each periodic pulser of

RWE is to be on for about 6n units of time, where xn is the cell of

L which is being scanned. The triple-return counter $i (with d as

its secondary organ) is to supply this delay when a periodic pulser

is feeding loop C2 , and the triple-return counter <I>2 (with C2 as its

secondary organ) is to supply this delay when a periodic pulser is

feeding loop Ci . But time is lost between each of these triple-return

counters and its secondary organs. Moreover, the output of a triple-

return counter (<fv6 or <f>2 -b) cannot be used to stop a periodic

pulser until it passes through CCi , the main channel, CC2 ,
RWEC,

CC3 , the main channel again, and CCi again. Altogether about 2000

units of time are lost in these two ways. Consequently, a periodic

pulser of RWE must be turned on about 2000 units of time later than

the triple-return counter associated with it. The exact amount of

delay needed varies with each of the 16 control organs CO of RWEC.
Von Neumann solved the problem by dividing the delay area W into
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four parts and associating one part with each periodic pulser of RWE.
Most of the delay needed is obtained by sending a pulse through this

delay area. The variable part of the delay is obtained in the delay

area D of each CO (Fig. 40).

We will next explain briefly how the memory control MC functions

under the general direction of the constructing unit CU (Figs. 37 and

50). The basic operation of reading, writing, and lengthening (or

shortening) the loops Q and C2 is carried out in two stages. First,

CU sends a signal to MC telling it to read; MC then reads cell xn

and sends the result to CU. Second, CU sends signals to MC telling

it what to write in cell xn and whether to lengthen or shorten the loops

Ci and C2 ; MC then executes these instructions and sends a comple-

tion signal to CU.
The first stage of the basic memory operation begins when a stimu-

lus emerges from output ox of CU and enters the top of RWEC. It

enters CC3 at vx
• 1 , is coded by a pulser of CC 3 , enters the main chan-

nel, enters CCi , is decoded by a decoder of CCi , enters RWE at

Vi'l, and stimulates the pulser P (10101) of RWE; this pulser is

labeled "0.0" in Figure 39a. The sequence 10101 enters Q at Vi and

goes down the upper part of Ci . If cell xn is in state U (representing

a "zero") the sequence 10101 changes xn to state io and a 1 emerges

from exit Wi of Ci ; if cell xn is in state Jo (representing a "one"),

the complete sequence 10101 emerges from exit Wi of Ci . In both

cases the output goes to the 1 vs. 10101 discriminator ^ of RWE.
If xn stored "zero," a stimulus emerges from output b of and goes

via ty-b, CCi , the main channel, CC2 ,
Sf'-fr, and RWEC (near the

top) to the input i\ of CU. If xn stored "one," a stimulus emerges

from output c of and goes via c, CCi , the main channel, CC2 ,

^•c, and RWEC (near the top) to the input i2 of CU. The unit CU
now knows the contents of cell xn . This completes the first stage of

the basic memory operation of MC.
To start the second stage of the basic memory operation of MC

the constructing unit CU sends the following signals to the top of

MC:
(1) A stimulus from output o2 if "zero" is to be written in xn ; a

stimulus from output o3 if "one" is to be written in xn .

(2) A stimulus from output o4 if loops Ci and C2 are to be lengthened;

a stimulus from output o5 if loops Ci and C2 are to be shortened.

We will trace the effects of these stimuli separately.

A stimulus from o2 passes through area Y and stimulates a pulser

in area X. This pulser emits a coded sequence which travels along

the main channel and enters two decoders in CC2 . These decoders
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then turn on two PP(1) of RWEC. One of these PP(1) is shown at

the top of Figure 41b; it is used to control the writing operation if

loops Ci and C2 are lengthened. The other PP(T) is the upper PP(T)

of Figure 41 e; it is used to control the writing operation if loops

Ci and C2 are shortened. Similarly, a stimulus from_o3 causes two

PP(T) of RWEC to be activated. One of these PP(1) is shown in

Figure 41c; it is used to control the writing operation if loops Ci and

C2 are lengthened. The other PP(1) turned on by the signal from

oz is the lower PP(T) of Figure 41e; it is used to control the writing

operation if loops Ci and C2 are shortened. Both PP(T) turned on by

signals from o2 (or o3 ) are turned off at the end of the basic memory
operation by the completion signal that goes to input i3 of CU.
The signals from output o4 of CU (signifying lengthening) and

output o6 of CU (signifying shortening) enter MC in different ways.

A stimulus from o4 enters the top of RWEC and turns on the first

control organ, namely COi . After control organ COi directs RWE
to carry out certain operations, it is turned off and the control organ

C02 is turned on. Then C03 and C04 are used in a similar way. At

this point there is a branch. If a "zero" is to be written in xn , control

organs C05 and COe are used; while if a "one" is to be written in

xn , control organs COy and COs are used. When either COe or COs

is finished, a pulse is emitted from the output i% below it. This pulse

travels via CC3 and the main channel to do two things: first, it enters

area X, passes through area Y, and enters input U of CU, signifying

that the basic operation of MC is finished; second, it enters CC2 at

four places to turn off the two PP(T) of RWEC that were storing

the bit to be written in xn .

The signal from output ob of CU (signifying shortening) passes

through Y, X, the main channel, and CC2 , and enters the control

organ C09 . Control organs CO9 , CO10 , COn ,
COJ2 ,

CO^ , and

CO14 are used in that order. The output P from COh is gated by the

PP(1) of Figure 41e. If a "zero" is to be written in xn , the signal

Vi'4 is used; while if a "one" is to be written in xn , the signal Vi-5

is used. In either case the control organs CO15 and COi6 are then used.

When COie is finished, a pulse is emitted from the output iz below it.

As in the case of lengthening, this pulse does two things: it turns

off the PP(T) of RWEC that were storing the bit to be written in

xn , and it enters input i% of CU to signify that the basic memory
operation of MC is finished. At the end of a basic operation the

memory control MC is left in its original state.

Table V summarizes the effect of the control organs of RWEC on

the pulsers and periodic pulsers of RWE. We will illustrate how these
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control organs work by tracing the action of COi . The design of a

CO is given in Figure 40; all CO are the same except for the length of

the delay path (B. The particular control organ COi is located at the

top of RWEC (Fig. 41a). The state of the connecting loop Ci and

the linear array L at the time COi takes control is shown in Figure

33a; loop Ci passes through cell xn and consists entirely of ordinary

transmission states. The state of the timing loop C2 at the time COi
takes control is shown in Figure 32a; the effect of COi on C2 is shown

in Figures 32b and 32c.

The action of COi is as follows. The stimulus from output o4 of

CU (signifying lengthening) enters input a of COi and accomplishes

three tasks. First, it goes via the top and left side of COi to enter

input a+ of the alternate PP(T) of COi
,
thereby activating this

periodic pulser, which will be on while COi is in control. Second, the

input a of COi goes from output c of COi into input $i • a of CC3 ;

from there via CC3 , the main channel, and Cd to output <3va of

CCi ; and from there into input a of the triple-return counter <f>i of

RWE (Fig. 39a), thereby starting this triple-return counter. Third,

the input a of COi goes via the delay path (B of COi to output b of

COi ; from there to input u2 -a+ of CC3 ; thence via CC3 , the main

channel, and Z into the delay area W; through a portion of W and

back through Z to the main channel; through CCi to output u2 -a+

of CCi ; and from there to input a+ of the periodic pulser PP (110110)

in the lower part of RWE (Fig. 39b), thereby starting this periodic

pulser. The sequence 110110 repeatedly enters input u2 of loop C2 .

Each 110110 converts a cell of the upper part of C2 from ^ to in

the following way: T kills _o to U, 1011 changes U to according to the

direct process of Figure 10, and the final 0 has no effect. Hence n
occurrences of the sequence 110110 into u2 will convert the upper part

of loop C2 from the path shown in Figure 32a to the path shown in

Figure 32b.

The production of n sequences 110110 is controlled by the triple-

return counter <f>i of RWE, which uses the loop Ci as its secondary

organ U. The output from b of <$>i is used to turn off the PP (110110)

of Figure 39b in the following way. The output from b of <$i enters

CCi at goes through CCi to the main channel and to CC3 , and

enters input d of each of the control organs COi , C02 ,
C09 , COio

,

COn , and COi2 . All these CO are inactive except for COi , so in

every case except this one the effect of the input to d to a CO is only

to attempt to turn off an alternate PP(1) which is already off. This

does no harm, as we saw at the end of Section 3.2.2. In the case of

COi , the input to d turns its PP(1) off and also passes through the
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confluent cell at the lower right of COi and exits at e and /. The
"off" signal into a_ of PP(T) causes a stop at 6 too late to block the

emission from e and /.

The output from e of COi enters CC3 at w2 -a_ ;
goes through

CC3 , the main channel, and CCi ; leaves CCi at u2 • a_ and enters

PP(llOllO) at a_ . In this way PP (110110) is shut off after it has

emitted exactly n sequences 110110.

The output from / of COi goes to two different places. First, it enters

CC3 at u2 -

1

; it passes through CC3 , the main channel, and CCi ; and

finally it leaves CCi 2Xu2 -l and enters the pulser P (II 101001 ), which

is marked "0.2" in Figure 39b. The sequence 11101001 then enters

input u2 of C2 . The first half (1110) of this sequence changes a U to

ii, while the last half (1001) of this sequence changes the next U to

Hence loop C2 is left in the state shown in Figure 32c.

Second, the output from / of COi enters input a of C02 ,
thereby

starting the operation controlled by C02 . The periodic pulser of

RWE which is controlled by C02 produces the result given in Figure

32d, and the pulser of RWE which is controlled by C02 produces the

result shown in Figure 32e. Thus the control organs COx and C02

together bring about the lengthening of the timing loop C2 . The
control organ C02 then passes control to C03 .]

4.3.2 Detailed discussion of the functioning of MC. We enumerated

in Section 4.1.4 the specific functions of the memory control MC,
namely: a purely descriptive static statement in (1), the start in (2),

the substantive operations in (3) {reading xn ), (6) {altering xn }, and

(7) {moving xn ,
i.e., n = n\ ; and the completion in (8). {All these

numbers refer to the listing in Sec. 4.1.4.} Postulate (1) calls for no

action. The implementation of (2) {responding to a starting signal

from CU to MC} and of (8) {delivering a completion signal from

MC to CU} , is easy; we will attach these where they obviously belong,

at the beginning of (3) and at the end of (8), respectively. Carrying

out the other substantive operations (3), (6), and (7) is, of course,

much more complicated; Sections 4.1.5-4.2.4 gave an outline of this.

Now that this outline is completed, we must perform the necessary

constructions in detail. In other words, we must fill in specific com-

ponentry to execute the operations enumerated and discussed in

Sections 4.1.5-4.2.4. We proceed to do this in what follows.

We discussed operation (3) first in Section 4.1.5. We then took up
operation (6) in Sections 4.1.6-4.1.7, but this was only a preliminary

discussion; the final form was developed in Section 4.2.4. This form

was actually meant to be meshed with the processing of operation

(7). The latter was discussed in Sections 4.2.1-4.2.2. Thus the com-
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plete discussion must begin with Section 4.1.5 and then continue with

Sections 4.2.1-4.2.3, the latter being combined with Section 4.2.4.

Section 4.1.5 requires us to inject the sequence 10101 (with a

guaranteed 00 thereafter) at vi and to feed the output of w\ into the

input a of the T vs. 10101 discriminator ^ of Figure 25. The outputs

b and c of ^ then indicate T (i.e., xn = U and £n = 0) and 10101 (i.e.,

xn = io, and = 1), respectively.

Sections 4.2.1-4.2.3, combined with Section 4.2.4, call for more
complicated arrangements. Section 4.2.1 does not describe any
specific operations. Section 4.2.2 postulates a definite sequence of

operations: (28'.a)-(28'.d), and (29'.a)-(29'.g). Section 4.2.4 re-

places operations (29'.e)-(29'.g) by operations (29'.e')-(29'.h').

Section 4.2.3 postulates these operations : (30
/

.a)-(30
/

.g) and (3l'.a)-

(31
/

.h). Section 4.2.4 replaces operation (3l'.d) by operation (3l'.d').

Note that Sections 4.2.2 and 4.2.3 are alternative, depending on the

value of e
s+1

(whether e
s+1 = 1 or —1, respectively), i.e., on the first

response of CU according to postulate (5) in Section 4.1.4. The
insertion of Section 4.2.4 into Sections 4.2.2 and 4.2.3 is also condi-

tional, depending on the value of £n
s+1

(it takes place only if £n
s+1 = 0;

cf. the beginning of Sec. 4.1.6), i.e., on the second response of CU
according to postulate (5) in Section 4.1.4.

In order to describe the communications between CU and MC, and

in view of the fact that we will not describe here in detail the internal

functioning of CU, we must define certain specific inputs and outputs

of CU.
The inputs of CU correspond to the signals that go from MC to

CU according to postulates (l)-(9) in Section 4.1.4. These are the

following :

(11) A signal according to (3), indicating that £n
s

(n = n) has been

read by MC and found to be 0; i.e., xn = U.

(12 ) A signal according to (3), indicating that £n
s

(n = n) has been

read by MC and found to be 1; i.e., xn = i°.

(z3 ) The completion signal of MC according to (8).

For each one of these signals the symbol in parentheses which

precedes it is the designation of the input of CU to which it is to go.

That is, these inputs are .

The outputs of CU correspond to the signals that go from CU to

MC according to postulates (l)-(9) in Section 4.1.4. These are the

following

:

(01) The start signal to MC according to (2).

(02 ) A signal according to (5), indicating that £n
s+1

(n = n) has

been formed by CU and found to be 0.
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(a 3 ) A signal according to (5), indicating that (n = n) has

been formed by CU and found to be 1.

(04 ) A signal according to (5), indicating that e
s+1

has been formed

by CU and found to be 1.

(05 ) A signal according to (5), indicating that e
s+1

has been formed

by CU and found to be —1.

For each one of these signals the symbol in parentheses which

precedes it is a designation of the output of CU from which it is to

come. That is, these outputs are 01-05

.

Our discussion above further shows that the signals from 04 and

05 are immediately effective on MC: they determine whether MC
enters the action cycle (28'.a)-(28'.d), (29'.a)- (29'.g) {with a

possible replacement of (29'.e)-(29'.g) by (29'.e')-(29'.h')} or the

action cycle (30'.a)-(30'.g), (3l'.a)-(3l'.h) {with a possible re-

placement of (3l'.d) by (3l'.d')}. Obviously, the signal from 01,

too, is immediately effective on MC: it is a start signal.

On the other hand, the signals from 02 and 03 are not immediately

effective on MC: they determine whether the replacements referred

to above will be made in the action cycles generated by 04 and 05 .

(03 causes the replacement to be omitted; o2 causes it to occur.)

Consequently, o2 and 03 cannot act directly on the modus operandi

of MC. They must, instead, activate two (alternative) memory
organs in MC which can then effect the operations of MC when they

reach those points where this is required. Let the memory organs

activated by 02 and 03 be designated by a 0 and a x ,
respectively.

These considerations are summarized in Figure 38, which shows

schematically the logical structure of the procedure that MC is to

follow.

In this figure the arrows (horizontal and vertical) indicate the

path of stimulation. The double horizontal lines separate areas within

which the stimulation passes entirely through the channels in MC
to be constructed, while these double lines themselves are crossed

by processes that take place outside these channels. (As a rale these

processes take place in CU, but in one case, that of the second double

line from above, they take place within the discriminator ^.

)

The single horizontal lines separate alternatives; i.e., the two

processes at the two sides of such a single horizontal line, but between

a pair of double horizontal lines, represent alternatives that are in

fact mutually exclusive.

Each bracketed equation on the left margin indicates a value of

or £n
s+1

or e
s+1

that is characteristically associated with the alterna-

tive shown next to the equation in question.
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The figure contains seven groups of operations, referred to by

the numbers
{
(28'.a)-(3l'.h)} by which they were designated in

Sections 4.2.2-4.2.4. These are restated explicitly in Table II.

We have given these operations new designations (0.1)- (0.31),

which are shown in Table II, for the sake of convenience, in juxta-

position with the old designations (28'.a)-(3l'.h). Among the 31

operations (0.1)- (0.31) there are 16 with an asterisk and 15 without.

The former are repetitions (norn+ lorn - 1 repetitions; cf. there),

hence they have to be executed by suitable periodic pulsers (PP's),

for whose turning on and turning off arrangements with appropriate

delays must be made. The latter are single operations; hence they

call for ordinary pulsers (P's) only. Two of these
{ (0.19) and (0.29)}

require even no P, since they call for the injection of single stimuli

only.

The turning on and turning off and concomitant delay arrange-

ments for the PP (for the 16 operations with an asterisk) were dis-

cussed in Sections 4.2.2-4.2.4. In each case this required using a

triple-return counter <£ (cf. Fig. 23). The use of this organ for this

purpose was introduced in Section 4.1.7, after operation (27'.a'),

and in Section 4.1.9, after operation (28'.a). In the first case <£ had

to be attached to C2 ,
i.e., its output d to v2 and its input c to w2 . In

the second case $ had to be attached to Ci ,
i.e., its output d to vx and

its input c to Wi . The subsequent discussions in Sections 4.2.2-4.2.6

showed that these were the only two forms in which $ was required.

We therefore provide two triple-return counters, <J>X and <£2 , the first

one being attached to Ci (i.e., its input c = Ci to W\ and its output

d == di to ^i), and the second one to C2 (i.e., its input c = c2 to w2

and its output d = d2 to v2 ). The notations introduced in Section

4.2.2 after operation (28'.a), and in Section 4.1.7 after operation

(29'.a'), apply to 3>i and 3>2 ,
respectively. Thus 5/' is the delay from

Wi to Ci and 6/ is the delay from di to vx (these refer to 3>i), while

b" is the delay from w2 to c2 and 52 is the delay from d2 to v2 (these

refer to 3>2 ).

Of the 16 operations with asterisks, 6 have to be timed by $i

{(0.1), (0.3), (0.16), (0.18), (0.20), (0.22)} and 10 have to be timed

by *2 {(0.5), (0.7), (0.9), (0.11), (0.13), (0.15), (0.23), (0.25)
,

(0.28), (0.30)}. Of the 6 in the first class, 3 require a PP (110110)

with its output attached to
{ (0.1), (0.16), (0.20)} and 3 require

a PP (110000) with its output attached to v2 { (0.3) , (0.18), (0.22)}.

Of the 10 in the second class, 5 require a PP(llOllO) with its output

attached to ux {(0.5), (0.9), (0.13), (0.23), (0.28)} and 5 require a

PP( 110000) with its output attached to vx {(0.7), (0.11), (0.15),



Table II

Summary of the pulse sequences sent into loops Ci and C 2

New
Designation

Former
Designation

Operation

(/) Group (28' .a)-(28' .d) and (29' .a)- (29' .d) of Section 4.2.,

Inject n -f- 1 sequences 110110 at u 2 .

Inject the sequence 11101001 at u 2 .

Inject n + 1 sequences 110000 at v 2 .

Inject the sequence 11010 at v 2 .

Inject n sequences 110110 at ui .

(0 1)* (28 '.a)

(0 2) (28'.b)

(0 3)* (28'.c)

(0 4) (28
,

.d)

(0 5)* (29\a)

(0 6) (29'.b)

(0 7)* (29'. c)

(0 8) (29'.d)

Inject the sequence 1111011110110111001 at m
Inject n sequences 110000 at V\ .

Inject the sequence 110101101011001 at vi

(II) Group (29'.e')-(29'.h') of Section 4.24

(0 9)* (29'.e') Inject n sequences 110110 at ui .

(0 10) (29'.f) Inject the sequence 111101 at ui .

(0 11)* (29' .g') Inject n + 1 sequences 110000 at Vi

(0 12) (29'.h') Inject the sequence 1010 at V\ .

(0 13)* (29' .e)

(0 14) (29'.f)

(0 15)* (29'.g)

(IV) Group (3

(0 16)* (30'. a)

(0 17) (30'.b)

(0 18)* (30'.c)

(0 19) (30'.d)

(0 20)* (30'.e)

(0 21) (30'. f)

(0 22)* (30'. g)

(0 23)* (31'. a)

(0 24) (31'.b)

(0 25)* (31'.c)

(III) Group (29
f

.e)-(29
f

.g) of Section 4.2.2

Inject ?i + l sequences 110110 at ui .

Inject the sequence 1010 at u\ .

Inject Ti + l sequences 110000 at V\ .

a)-(30'.g) and (31' .a)- (31' x) of Section 4-2.3

Inject n sequences 110110 at u 2 .

Inject the sequence 111101 at u 2 .

Inject n sequences 110000 at v 2 .

Inject a single stimulus at v 2 .

Inject n — 1 sequences 110110 at u 2 .

Inject the sequence 11010 at u 2 .

Inject n — 1 sequences 110000 at v 2 .

Inject n sequences 110110 at ui .

Inject the sequence 11110111101 at ui

Inject n sequences 110000 at V\ .

(V) Group (31'. d') of Section 4-2

4

(0.26)
|

(31'.d')
|

Inject the sequence 110101 at vi .

(VI) Group (31'. d) of Section 4.2.8

Inject the sequence 1101011010 at vi .

oup (31'.e)-(31'.h) of Section 4.2.3

(0 27) (31'.d)

(VII)

(0 28)* (31'.e)

(0 29) (31'.f

)

(0 30)* (31'.g)

(0 31) (31'.h)

Inject n sequences 110110 at u\ .

Inject a single stimulus at ui .

Inject n — 1 sequences 110000 at vi .

Inject the sequence 11010 at V\ .

235
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(0.25), (0.30)}. The delay requirements were expressed in Sections

4.2.2-4.2.4 by specifying the amount by which the delay from the

turning on to the turning off of each PP is exceeded by the delay from

the input a to the output b of its <£. These excess amounts are restated

in Table III, together with the <£ and PP data given above.

Regarding the 15 operations without an asterisk we need only

specify which one of the inputs U\
,
vx of Ci and u2 ,

v2 of C2 each

operation feeds. Actually, 5 feed into wi{ (0.6), (0.10), (0.14), (0.24),

(0.29)}, 5 feed into t*
{ (0.8), (0.12), (0.26), (0.27), (0.31)}, 3 feed

into u2 { (0.2), (0.17), (0.21)}, and 2 feed into v2 { (0.4), (0.19)}. They

are shown in a systematic arrangement in Table IV, together with

the pertinent P data. We also show in this table a reference to an

additional sequence that has to be injected at V\ at a certain occasion.

This is the entry (0.0), which refers to the sequence 10101 that occurs

in the top line of Figure 38. Finally, we show (for later use) for each

P its length and height. [ There were several errors in von Neumann's

Table III

Summary of excess delay requirements for the periodic pulsers stimulating loops

Ci and C 2

Operation PP Used
Output of PP
Attached to

3> Used Excess Delay

3(6V + Sf) + a2|

where a^ is

(0.5) 250

(0.9) 250

(0.13) ^PP(llOllO) Ui 244

(0.23) 238

(0.28) 238

(0.7) 250

(0.11) 244

(0.15) PP (110000) Vi 244

(0.25) 238

(0.30)
j

244

3(6V + 670 + oi
,

where ai is

(0.1) 241

(0.16) >PP (110110) U2 247

(0.20)

><*>!

253

(0.3) 241

(0.18) >PP(110000) 247

(0.22) 253
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Table IV

The pulsers used to stimulate loops Ci and C2

Operation P Used
Output of P
Attached to

Length
(2k)

Height
(«+ 2)

(0.6) P(llllOllllOllOlllOOl) 28 7

(0.10) P(llllOl) 10 4

(0.14) p(IoTb) Ui 4 4

(0.24) P(llllOllllOl) 18 5

(0.29) Single stimulus 1

(0.0) i> /1 ni ni \F(1U1U1 )
a0 er

0

(0.8) P(llOlOllOlOllOOl) 18 9

(0.12) p(ioio)
* Vi

4 4

(0.26) P(110101) 8 5

(0.27) P(1101011010) 12 5

CO 31) P (11010) 6 4

(0.2) P(11101001)
\

10 5

(0.17) P(llllOl) ( U2 10 4

(0.21) P(11010) 6 4

(0.4) P(11010)
| v 2

6 4

(0.19) Single stimulus 1

Table IV. These have been corrected according to the rule stated

in the editorial summary at the end of Section 3.2.1.]

4.3.3 The read-write-erase unit RWE. 4
Figure 38 and the three

tables in Section 4.3.2, together with the other listings given there,

provide a definite basis for the construction announced at the be-

ginning of that subsection. We can therefore approach this construc-

tion now in more complete and specific terms.

The operations that we wish to instrument primarily affect Ci

and C2 ;
i.e., they interact with the inputs ux ,

V\ and u2 ,
v2 of these

organs and with their outputs wi and w2 . It is therefore best to start

our constructions with the organs that are in direct contact with

U\
, Vi , Wi and u2 ,

v2 ,
w2 . These are specified in Tables III and IV,

together with the ^ referred to in lines 2-4 of Figure 38. The func-

tioning of all these organs is controlled in the manner described in

Figure 38 and in Table II.

4 [Von Neumann's title for the present subsection was "The effector organs
of B. Positioning and connecting these organs."]
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Hence we begin by providing and positioning the organs of Tables

III and IV, as well as ^.

Table IV calls for 16 organs, 14 of which are pulsers (P), while 2

are merely providers of single stimuli. Each of these is actuated by a

single input, coming from RWEC (cf. Fig. 37), and has a single out-

put, feeding into one of u\ ,
v\

, u 2 ,
v 2 .

Table III calls for the following organs. First, 2 periodic pulsers

{PP(llOllO) and PP (110000)) are required, but since each of these

is required with two different output connections (u\ and Vi in the

first case, u2 and v2 in the second case), therefore only 4 periodic

pulsers are actually needed. (Table III also shows that each one of

these PP is required in several different situations—their numbers

are 5, 5, 3, 3, respectively—requiring different "excess delays." This

might incline one to introduce a separate PP for each such case, i.e.,

16 in all, instead of the above 4. However, it is more convenient to

take care of this by other arrangements, which will appear further

below, and to introduce only 4 PP's, as indicated above.) Second,

Table III requires a triple-return counter ($), but since this is re-

quired with two different c, d-connections (vi ,
W\ in one case and

v2 ,
w2 in the other) actually two such organs are called for. Each PP

is controlled by two inputs a+ and a_
,
coming from MC, and has a

single output feeding into one of ux ,
V\ ,

u2 ,
v2 . Each <£ has an input-

output pair a, b connected to MC, and an input-output pair c, d

connected to Vi , Wi or to v2 , w2 .

Finally, we need the T vs. 10101 discriminator ^. This has a single

input a which is attached to Wi and two outputs 6, c going to

RWEC (cf. Fig. 38).

[ Von Neumann overlooked one point when attaching the input a of

^ to the output Wi of Ci . When Ci is used to time the lengthening (or

shortening) of the timing loop C2 ,
single pulses will go from wx to the

triple-return counter $>i in Figure 39. But these pulses will also enter

^, which will then indicate a T received to the constructing unit CU.

We will assume that the constructing unit CU will be built so as

to ignore these spurious signals. Alternatively, the input to ^ could

be closed by a gate controlled from a PP(1) w7hen $i is in use. This

would, of course, change the design of RWE somewhat.]

All these organs are shown in Figure 39 in their relative positions

with respect to Ci ,
C2 (i.e., Ui , Vi , Wi ,

u2 , v2 ,
w2 ) on one hand and

with respect to MC on the other. The sub-organs contained in this

assembly are P's (designated 0.6-0.24, 0.0-0.31, 0.2-0.21, 0.4), PP J

s,

<£'s (designated $i ,
<£2 ), and a ^. All of these are not shown in their

true sizes. The entire assembly is part of MC. To the left, across the
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vertical dashed line, it is attached to the remainder of MC. To the

right it is attached to Ci , C2 , as indicated. The P of Table IV are

indicated by their 0 symbols, except for the two single-stimulation

organs which are shown as direct channels. All inputs and outputs of

the sub-organs that occur (P, PP, <£, ^) are properly indicated. The
various inputs and outputs that connect this assembly with the

remainder of MC are marked with symbols that are self-explanatory.

Inspection shows that there are 30 connections of the latter kind, of

which 4 are inputs to MC and 26 are outputs from MC.
Note, furthermore, that while the P, PP, and <£ are in their standard

orientations, i.e., in the orientations of Figures 16, 18, and 23, the ^
is reflected about the vertical in comparison to its standard arrange-

ment in Figure 25. Clearly, this calls merely for trivial transformations

of the construction. (Fig. 25 contains a P and a D, and these, too,

must be reflected about the vertical. This calls for corresponding

transformations in connection with Figs. 16 and 22. These, too, are

harmless; cf. the discussion in the middle part of Sec. 3.6.1 in connec-

tion with Fig. 29.)

The assembly of Figure 39 must be controlled, as we pointed out

at the beginning of this section, according to the scheme described in

Figure 38 and in Table II. The organs which effect this control must

occupy the deeper interior of MC. We saw in Figure 39 that the num-
ber of connections between this region, and between the assembly

that was explicitly described, is quite large, 4 inputs and 26 outputs.

This makes it a practical certainty that the lines representing these

30 connections will have to cross each other many times in order to

find their proper endings on the control organs within MC. This

means that the need for the organ that circumvents the difficulties

of line-crossing has arisen; i.e., we need the coded channel of Section

3.6.

We are not yet in a position to lay out the entire coded channel

that will be required, i.e., to select the appropriate arrangement, as

discussed in the first part of Section 3.6.1 and schematically shown in

Figures 28g-28k. This will be done later. For the time being, we will

concern ourselves only with the portion that is adjacent to the

assembly of Figure 39, i.e., that may be thought of as extending along

the vertical dotted line on the left edge of that figure.

We saw above that 30 lines (4 inputs and 26 outputs) connect with

this portion. Each of these is stimulated (or stimulates) independently

of the others. That is, in the notations used at the beginning of Sec-

tion 3.6.1, they correspond to inputs a v or outputs b v (from the point

of view of the coded channel) with different v. Hence the total range
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v = 1, • • •
, n must allow for at least 30 different possibilities. That

is, necessarily n ^ 30. Actually it is advisable to choose n somewhat
larger, since further requirements of the control MC will call for

additional v values for the inputs a v and outputs b v of the coded

channel. (Cf. below.)

On this basis we will now choose the m and k referred to in the

middle part of Section 3.6.1, which determine the coded sequences

iv
l

• • iv
m that correspond to the v (v = 1, • • •

,
n). In this respect

equation (12') and the observation following equation (13') are

relevant: given m, these observations determine k ( = (m + l)/2 or

ra/2, whichever is an integer) and the former determines

Max n

The following m are critical

:

m
k

Max n

(m - l\

7 8 9

4 4 5

20 35 70

Since we want n ^ 30, with a reasonable margin to spare, m = 7 is

inadequate, m = 8 is marginal (it will prove to be inadequate, cf.

below), while m = 9 is presumably adequate (it will prove to be

adequate; cf. below). We choose therefore

(32') m = 9, k = 5

so that n is limited by

(33') n ^ 70

only.

According to Section 3.6.1, each sequence i,
1

• • • iv
m begins with a

T, has length m = 9, and contains k = 5 I's. That is, it is 1 iv
2

• • • £„
9

,

where among the i
2

,
• • •

, i there are four l's and four 0's. We know
that there are precisely

(r:)=C)=

™

such sequences. Let us order them lexicographically, and use the

v = 1, • • •

, 70, to enumerate them in this order. This, then, defines

i,
1

- • • i,
m = 1 iv

2
- • • iv

9 for each v = 1, • • •
, 70, thus certainly in-

cluding the v = 1, • • •
, n {for any n according to condition (33 )}.

Let us assign to the 30 a v and b v of Figure 39 (i.e., to the ux
• 1, • • •

,
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<J>2 a occurring there) the numbers v = 1, • • •
, 30, in a vertically

descending sequence, according to that figure.

[ Von Neumann proceeded to calculate the dimensions of the

assembly of Fig. 39.

It turns out that the height of CCi is greater than the height of

RWE. Since von Neumann wanted to place each pulser and decoder

of CCi nearly opposite the organ of RWE to which it is connected,

the height of CCi controls the height of the complex CQ-RWE. Now
CCi has 4 pulsers P and 26 decoders D. Von Neumann said that the

height of each is 7, and, allowing a protective strip of U's between

each two consecutive organs, he arrived at a height of 239 for CCi

.

But this is wrong. The sequences von Neumann was using in his

coded channel are of length nine; each begins with a one and contains

four additional ones. By the rule of Section 3.3 for computing the

size of a decoder, the height of a decoder for a sequence of length

nine with five ones is either 10 or 11, depending on the specific se-

quence. In fact, the rule of Section 3.3 often gives a height which is

greater than the actual height of a decoder constructed by the design

algorithm of Section 3.3. But even when this is taken into account,

a height of over 300 units is needed by the CCi of von Neumann's

design. While this is a mere error of calculation, it upsets most of

von Neumann's later calculations concerning the size of MC and the

delays through MC.
This error cannot be corrected simply by increasing the height of

CCi and thereby the height of MC. The reason it cannot be so cor-

rected concerns the proper phasing of the periodic pulsers PP and

triple-return counters 3> of RWE. Each PP should be on for about

three times the delay around the loop Ci or the loop C2 (see Table

II of Sec. 4.3.2). But there is a delay within each <£ and between the

secondary input-output of each <i> and its connecting loop. Moreover,

the PP of RWE are controlled from RWEC. Hence a primary output

from a <I> of RWE must go through CCi , the main channel, CC2 ,

RWEC, the main channel again, and CCi again, all before it can

turn off the PP of RWE. Altogether, about 2000 time units are lost

in this way. Thus, for correct phasing, the starting of a PP of RWE
must be delayed about 2000 time units over the starting of its asso-

ciated triple-return counter <i>. Some of this delay is obtained in the

control organs CO of RWEC, but most of it is obtained in area W.
It will turn out that area W is not large enough to give the delay von

Neumann needed for his design.

Von Neumann's error can be corrected by extending area W to

the right. This destroys the rectangular shape of the memory control
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MC, however, and there are a number of ways of correcting the error

without changing the size of MC. In Chapter 5 we will redesign units

Z and W so that their heights can be reduced enough to allow CCi
to extend into the area now occupied by Z.

Von Neumann calculated the width of RWE and of CCi as follows.

The widest organ in RWE is the pulser labeled "0.6," which produces

a sequence with 14 ones (see Table II of Sec. 4.3.2). This calls for a

width of 28. All other organs of RWE are of width 24 or less. Von
Neumann added 1 unit for the vertical channel from this pulser to

input Ui of loop Ci
,
obtaining a total width of 29 units for RWE.

The coded sequences entering and leaving CCi contain 5 ones each;

hence the pulsers and decoders of CCi are each of width 10. Von
Neumann added a strip on each side in accordance with the design

of Figure 29. Hence CCi is 12 units wide. The combined width of

Cd RWE is thus 41 units.

Actually there is a small error here too. The vertical channel from

the output of the pulser labeled "0.6" would pass by, and receive

stimuli from, the confluent state in the lower right-hand corner of this

pulser, so that the wrong sequence would enter input ux of loop Ci .

There are a number of ways in which this error can be corrected so

that the complex CCi-RWE can be accommodated within a width of

41. The pulser can be turned upside down. The pulser can be re-

designed so as to be narrower and higher. The best way is to redesign

the coded channel, and hence CCi , as follows.

Let us count the number of pairwise distinct coded sequences

needed for the coded channel of MC. The outputs o2 ,
o3 ,

o5 of CU
and the input of CU pass through area X and require 4 coded

sequences. It will turn out that 4 coded sequences are needed in

area Z. An examination of Figures 39 and 41 shows that 31 additional

coded sequences are needed. Hence 39 pairwise distinct coded se-

quences are needed for the coded channel of MC.
Recall that m is the length of the coded sequence and k is the num-

ber of ones it contains. As von Neumann correctly calculated above,

his algorithm calls for m = 9 and k = 5 when 39 sequences are needed.

But a better choice is m = 9 and k = 4; this gives 56 different se-

quences, which is more than enough. The pulsers and decoders for

k = 4 are of width 8, a saving of two units over von Neumann's

pulsers and decoders.

Von Neumann later used the width of 12 for CC2 and CC3 and

calculated a width of 18 for RWEC. He calculated a height of 545

for CC3 ; lesser heights are required for CC2 and RWEC. Thus he

obtained a width of 42 and a height of 545 for the complex CC2
-
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RWEC-CC3 . But for this height of 545 to obtain, the decoders of

CC2 cannot always be placed so that their outputs feed directly into

the organs of RWEC, and the pulsers of CC3 cannot always be placed

so that their inputs come directly from the organs of RWEC. Vertical

channels are needed for their connections. These vertical channels

can be provided within the limits of von Neumann's dimensions for

the complex CC2-RWEC-CC3 by using decoders in CC2 and pulsers

in CC 3 which are of width 8, so that CC 2 and CC 3 can each be of

width 10 and RWEC can be of width 22.

Hence we modify von Neumann's design of the coded channel by

choosing m = 9 and k = 4, i.e., coded sequences of length 9 containing

4 ones. By the rule of Section 3.2.1 for computing the size of a pulser,

the pulsers of this coded channel will be of width 8 and height 7.

By the rule of Section 3.3 for computing the size of a decoder, the

decoders of this coded channel will be of width 8 and height 11. But

it turns out that every decoder constructed by the algorithm of

Section 3.3 has a height of 10. This means that CCi can be accommo-

dated within a height of 320 and a width of 10, including insulating

strips of unexcitable states.

We thus end up with the following dimensions for the memory
control MC and its main parts (cf. Fig. 37):

MC: 547 cells high, 87 cells wide

RWE: 320 cells high, 31 cells wide

RWEC: 545 cells high, 22 cells wide

CCi : 320 cells high, 10 cells wide

CC2 : 545 cells high, 10 cells wide

CC3 : 545 cells high, 10 cells wide.

These figures presuppose that the design can be completed without

enlarging any of the organs of RWE. This presupposition will be

confirmed in Chapter 5.]

4.3.4 The basic control organ CO in MC. We have completed the

first task formulated at the beginning of Section 4.3.3: providing and

positioning the organs of Tables III and IV in Section 4.3.2, and

of ^, i.e., of those organs that are in direct contact with U\
, Vi , Wi ,

u2 ,

V2
,
W2 (i.e., with Ci and C2 ). We can therefore now pass to the second

task formulated there: controlling the organs referred to above, in

the manner described in Figure 38 and in Table II of Section 4.3.2.

It is advantageous to deal first with a certain preliminary problem,

before coming to grips with the above task in its entirety. This

preliminary problem is that of controlling the functioning of the four

PP of Figure 39 according to the requirements formulated in Table

III in Section 4.3.2, and in the discussion immediately preceding it.
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According to these, each PP must first be turned on and then turned

off, so that the delay between these two events exceeds by a specified

amount the delay from the stimulus at the input a of a certain <£ to

the response at its output b. Each PP is attached to one of Ui , Vi ,

u 2 , v2 . Let us designate the one of these under consideration by u.

Let us also designate its<f> (<l>i or<£2 ) by l>. Then we have to stimulate,

according to the above, first u-a+ and <l-a, and then let the response

at $-b stimulate u-a^ . The delays of these processes must, in addi-

tion, be so adjusted that they produce together the desired excess

delay (of u-a+ to u-a^ over 5>a to !>•&) referred to above.

This control organ has the symbol CO.

[ See Figure 40, which differs from von Neumann's design in four

respects. First, von Neumann placed output 6 above output c; our

positioning is better, since the stimulus from b needs to be delayed

relative to the stimulus from c. Second, von Neumann omitted the

insulating row of U's under the PP (I); this is needed since the bottom

row of a PP (1 ) contains some confluent states. Third, von Neumann's

CO had a width of 17, while the CO of Figure 40 has a width of 16.

Fourth, and most important, von Neumann used his PP(T) of Figure

17b. This is wrong for the following reason.

At most one control organ CO of RWEC (Fig. 41) is on at any

time; when it is on it has control of RWE. Now the output from the

primary output of a triple-return counter ($i or <£2 ) of RWE (Fig.

39) causes stimuli to enter the stop inputs a_ of several CO of RWEC.
As mentioned at the end of Section 3.2.2, if von Neumann's PP(1)
of Figure 17 is stimulated at the stop input a_ when it is inactive, it

will be damaged. The alternate periodic pulser PP(1) of Figure 20

is not harmed under these circumstances, and therefore we have used

it in CO.]

There are 2 different PP, but they are attached to 4 different u

(u determined the PP as well as its l>; cf. Table III) ; hence we might

expect that we will need 4 organs CO. However, these 4 cases are

further subdivided into 16 sub-cases, according to Tables II and III,

each sub-case corresponding to a 0 with an asterisk in these tables.

Indeed, each formula (0.x) with an asterisk requires a different

follow-up move and sequence of moves according to Table II, and a

different excess delay according to Table III. (Those lines of Table

III, which happen to call for the same excess delay, differ in their

u.) Consequently we need 16 organs CO, one for each (0.x) with

an asterisk.

Consider now a specific CO, i.e., a specific (0.x) with an asterisk.

The input a is the primary input. A stimulus at a should go to u-a+
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and to 3>a; these will therefore be connected to two outputs, to b

and to c, respectively. Note that the u-a+ and the <Ja referred to

must be thought of as certain suitable inputs of the coded channel,

while the u-a+ and <& a in Figure 39, which are the ones ultimately

aimed at, are outputs of the coded channel. Hence the functioning

of this organ, involving u-a+ and l>-a, will be affected by the corre-

sponding delays due to the use of the coded channel. This is equally

true for the uses involving u-a- and <i>-6, which will appear further

below. All these coded channel delays will affect, additively or sub-

tractively, the excess delays prescribed in Table III. Hence precise

delay adjustments will have to be made in CO to account for these

things, and it will be possible to make a final determination of these

only after having effected the precise positioning of this CO with

respect to the coded channel, and the laying out and positioning of

the entire coded channel with respect to RWE. We must therefore,

for the time being, leave these delay adjustments in a schematic and

adjustable condition. We do this by assigning an area D, of as yet

unspecified dimensions, to the delay path from a to b which will

become necessary for this purpose; this delay path is indicated by

the symbol (B.

We can now go on to the other functions of CO. These are the

following. A response stimulus from $-b must stimulate w-a_ , and

also the follow-up move that Table II (and, more broadly, the general

scheme of Fig. 38) prescribes for this CO case {i.e., for this 0 with an

asterisk}

.

It would not do, however, to take a connection directly from
!>•& to u-a- and to the input of the followT-up move. Indeed, the same

l>-6 corresponds to several (6 for 3>i and 10 for $2 ; cf. Table III) of

our CO cases. Accordingly, it corresponds to two possible u's (u2 ,

V2 for 3>i and ux , V\ for <i>2 ; cf. Table III) and to several possible

follow-up moves (6 or 10, respectively; cf. above). Hence our CO
must be provided with a memory, to cause the b stimulus to activate

only its (the CO's) own u-a- and follow-up move.

Actually, this is not necessary for the u-a-
;

i.e., !>•& could be

tied to all of Ui • a_ , vi
• a_

,
u2 • a_

,
v2 • a_ . This would merely turn off,

in addition to the one PP which has been previously turned on (by

u-a+ ) and which it is intended to turn off now (because it corre-

sponds to the correct u), also the three other PP which had not been

previously turned on at all. Turning off a PP [of Fig. 39] which has

not been turned on has no effects whatever [cf. the end of Sec. 3.2.2.]

For the follow-up move, on the other hand, this special control

of the <$>•& stimulus is necessary. Indeed, if this stimulus were per-
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mitted to start all the follow-up moves corresponding to its l> (6 or

10, respectively; cf. above) together, this would corrupt the func-

tioning of the automaton altogether. Since the special control of the

$-b stimulus is needed for its effects on the follow-up moves, it is

simplest to apply that control to the effects on u-a- also. We will do

this in what follows.

This special control (i.e., the coincidence of the fact that the

specific CO under consideration is the one that has been activated,

with the response of l>-6) requires a memory organ, as noted above,

and a subsequent coincidence organ. The memory organ is, of course,

a PP(1), turned on from a of CO. The PP(1) then supplies con-

tinuously one stimulus to the coincidence organ, the C in the lower

right corner of Figure 40. When the <&-b response arrives (i.e., when
the input d is stimulated), then the coincidence organ receives its

other stimulus. The response of the coincidence organ then emits

stimuli at the outputs e and /. Output e is connected to u • a_ , while

output / is connected to the follow-up move.

The input d also clears the memory, i.e., turns the PP(1) off.

[An examination of Figs. 40 and 20 shows that] the turning off of

PP(1 ) comes too late to interfere with the coincidence-sensing opera-

tion.

The delay area D is now allotted a width of 15, while its height h

is kept adjustable. We will choose h later, when the detailed laying-

out and adjusting, referred to above, will take place. The discussion

and determination of the delays within CO must, of course, also be

postponed until then.

4.3.5 The read-write-erase control RWEC. 5

[See Fig. 41.] Let us

now consider the general problem outlined at the beginning of Section

4.3.4: controlling the organs that are in direct contact with the con-

necting loop Ci and the timing loop C2 (i.e., CCi plus RWE of Fig.

37), according to Figure 38 and Table II in Section 4.3.2. This will,

of course, be based on the use of the control organ CO of Section 4.3.4.

Figure 38 shows that there is still a memory requirement to be

satisfied: the instructions "starts a0
" (line 5) and "starts ai" (line 6)

amount to this.

Activities depending on one or the other of these two instructions

(marked "a0 active" or "on active," in lines 9 and 15) occur twice for

each. It is simplest to attach a "local" memory with this function at

each one of the four points referred to. Hence we will have to provide

four PP(T)'s for this purpose. Thus the activities referred to above,

6 [Von Neumann's title was "The control-area in B. Overall dimensions of

B."]
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which depend on a0 or ax being "active" (lines 9 and 15) will be

derived from a coincidence organ (a C), which gets one stimulus

from the relevant PP, and the other stimulus from the logical ante-

cedent of the activity in question, according to Figure 38.

Finally, there exist two orders "stops a0
" and two orders "stops

ai" (whichever happened to be active; cf. lines 10 and 16); i.e., at

this point the two PP of a0 or of a\
,
respectively, must be turned off.

However, here a deviation from Figure 38 is permissible. Indeed,

these "stop," (i.e., turn-off) operations can be delayed to the end

of these sequences {i.e., to the points where iz is stimulated (lines

12 and 19)}. Here all four sequences meet. Therefore, here all these

turn-offs can be effected by a single stimulus, which stops all four

PP's. In this way not only the two PP of that one of ao , a\ which

was turned on will now be turned off, but also those of the other one,

which was not turned on at all. The latter measure, however, is

harmless; it has no effects whatever. [As explained at the end of

Section 3.2.2, this is so for von Neumann's general periodic pulser

PP, but not for his PP(1) of Figure 17b. Therefore the alternate

PP(T) of Figure 20 should be used here. That is, the four PP(T) of

Figures 41b, 41c, and 41e should be the alternate PP (1) of Figure 20.]

The stimulus to be used for this purpose is obviously % itself.

Based on all these considerations, we arrive at the assembly shown

in Figure 41.

The structure of this figure is very similar to that of Figure 39.

The vertical dotted lines which border it on both sides have the same

role as the single vertical dotted line in Figure 39. As discussed in

Section 4.3.3, the latter indicated the portion of the coded channel

adjacent to the assembly of Figure 39 (i.e., CCi , which is adjacent

to RWE in Fig. 37). Similarly now the two first mentioned lines

indicate the portions of the coded channel adjacent to the two edges

of our assembly in Figure 41 . We will discuss the relationship of these

three portions of the coded channel (CCi ,
CC2 , and CC3 ) further

below; it will appear that they determine together most of the coded

channel of the memory control MC.
All inputs and outputs of the sub-organs that occur in Figure 41

(PP, CO) are properly indicated. The various inputs and outputs

that connect this assembly with the coded channel (i.e., with CC2

and CC3 ) and with the constructing unit CU are marked with symbols

that are self-explanatory.

Everything on the CC2 side of RWEC is an output of CC2 ;
inspec-

tion shows that there are 33 of these. Repeatedly, there are several

specimens of the same output b v in positions that are immediately
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adjacent to each other. (In one case two neighboring in one

case four neighboring and in five cases two neighboring <i>2 -6.)

In each one of these cases it would have been possible to replace the

complex of neighboring b v's by a single b v , thus shortening (i.e.,

reducing the height of) the CC2 side. However, the height of the CC2

side is even so not controlling (cf. further below); hence there is no

advantage in reducing it. On the other hand, a merger of &„'s would

necessitate the introduction of vertical distribution channels in the

assembly to the right of CC2 (leading to the various sub-organs CO
that these b v ,

i.e., these <i>i-6 and <i>2 -6, feed), and thereby the width

of the assembly would be effectively increased.

Everything on the CC3 side is an input of CC3 ;
inspection shows

that there are 68 of these.

In addition to these there are two inputs, 0\ and o4 , and two out-

puts, i\ and i2 , on the top side of Figure 41.

The portions CC 2 and CC3 of the coded channel that we have now
introduced have as inputs a v and outputs b v (always from the point

of view of the coded channel, i.e., of CC2 or CC3 ) all those that

occurred on CCi (in Fig. 39), and in addition the following new ones:

/3, i3 (these occur as both inputs and outputs), o2 ,
o3 ,

o6 (these occur

as outputs only). Thus the 30 distinct v that were required for CCi
(cf. Sec. 4.3.3) are augmented by another 5. This ties into our discus-

sion of formulas (32') and (33'). It means that we have so far n ^ 35.

(There will be yet another increase of n\ cf . later.

)

[ In the remainder of this section von Neumann calculated the

dimensions of CC2 ,
RWEC, and CC3 ; see the end of Section 4.3.3

for a discussion of his results.

We add Table V, which collates the information in von Neumann's

Figures 32-36, 39, and 41 and Tables II-IV. Table V shows how the

control organs of RWEC control the pulsers and periodic pulsers of

RWE]



Chapter 5

AUTOMATA SELF-REPRODUCTION

5.1 Completion of the Memory Control MC
[5.1 J The rest of the manuscript. Von Neumann's manuscript

continues for six further sections and then abruptly terminates.

These sections are devoted mainly to detailed calculations of the

delays within the memory control MC. Most of these delay calcu-

lations are wrong, owing to the errors von Neumann made in design-

ing and calculating the sizes of various organs and units in Chapter 3.

For this reason we will not reproduce the balance of the manuscript

but will summarize it instead. The omitted portion of the manuscript

is of about the length of Chapter 3 and contains 7 figures.

The organization and operation of the memory control MC is

summarized in Section 4.3.1 and Figure 37. The status of von Neu-

mann's design of MC at the end of Chapter 4 is as follows.

Read-write-erase unit RWE: The pulsers, periodic pulsers, triple-

return counters, and discriminator that constitute RWE have been

designed and their order in RWE has been decided; see Figure 39.

The exact positions of these organs in RWE have not been decided

upon, but each is to be so placed that it is fed nearly directly by a

decoder of CCi and/or it feeds a pulser of CCi nearly directly. RWE
is to be 320 cells high and 31 cells wide. There is a wide range of choice

for the position of exit w2 of the timing loop C2 . Von Neumann placed

it 48 cells above the bottom of RWE.
Read-write-erase-control unit RWEC: RWEC is mainly composed

of control organs CO; these have been designed except for specifying

the size of delay area D and the design of the delay path (B (Fig. 40).

The 16 CO's and the 4 PP(T)'s are arranged as in Figure 41. The
exact positions of these organs in RWEC have not been decided

upon, but each organ is to be placed so as to satisfy as nearly as

possible the principle that a decoder of CC2 feeds it directly and it

feeds a pulser of CC3 directly. RWEC is to be 545 cells high and 22

cells wide.

Coded channel: RWEC and RWE are to be positioned as in Figure

251
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37. The coded channel consists of CC3 ,
X, Z, Cd ,

CC2 , and the

main channel. The main channel extends from the solid dot near

the bottom middle of Figure 37 to the solid square in the upper left-

hand corner of the same figure—more specifically, the main channel

ends where it feeds the topmost pulser of CC2 . The code to be used

in the coded channel has the following characteristics. Each coded

sequence will begin with a one, will contain exactly three other ones,

and will be of length 9 or less. This code allows for 56 different se-

quences; it will be confirmed later that less than this number of se-

quences is required. These sequences have not yet been assigned to

the inputs and outputs of the coded channel. The pulsers of the coded

channel will be of width 8 and height 7, and the decoders of width

8 and height 10. Cd is to be of width 10 and height 320. CC2 and

CC3 are each to be of width 10 and height 545.

The memory control MC will be 547 cells high and 87 cells wide,

assuming that the undesigned organs and units can be accommo-

dated in this space.

We will now summarize what von Neumann accomplished in the

part of the manuscript we are not publishing. He first combined the

read-write-erase unit RWE and its control RWEC as in Figure 37.

An examination of Section 4.3.3 and Figure 39 shows that informa-

tion flows in both directions through CCi , so that CCi contains both

decoders and pulsers. An examination of Section 4,3.5 and Figure 41

shows that RWEC receives information only from CC2 and trans-

mits information only to CC3 . Consequently, CC2 contains only

decoders and CC3 contains only pulsers. Hence, the non-cyclic coded

channel of Figure 28k is adequate. This confirms that the coded

channel of Figure 37 is indeed adequate. Otherwise, the cyclic channel

of Figure 30 would be needed. If this were so, the coded sequences of

the main channel of Figure 37 would have to be recoded when they

reached the end of the main channel and then transmitted to the

beginning of the main channel, as is done in Figure 27.

The area X was designed next. The outputs o2 , o3 , and ob from the

constructing unit CU pass through direct transmission channels in

Y, enter pulsers in X, enter the main channel of MC as coded se-

quences, and pass through CC2 into RWEC. A completion signal

destined for input % of CU leaves RWEC at any one of the three

exits shown in Figure 37, is coded in CC3 , enters the main channel, is

decoded in X, and passes through Y to the exit labeled
c%". Area X

thus contains three pulsers and one decoder, and is of height 36 and

width 10. Von Neumann made area Y the same height as area X,

and area Z the same width as area X, thus specifying the dimensions
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of areas Y, Z, and W. The actual design of area Y is left until later,

but it is very simple. Area Y contains four communication lines

composed of ordinary transmission states; the rest of Y is unused.

We thus have the following dimensions

:

Area X: 36 cells high, 10 cells wide

Area Y: 36 cells high, 31 cells wide

Area Z: 191 cells high, 10 cells wide

Area W: 191 cells high, 31 cells wide.

Von Neumann next considered the delays that are needed within

MC to exclude the possibility of corruption by interference among
the messages which circulate in this system. These fall into two

classes: those needed to prevent corruption in the main channel

and those needed to prevent corruption within RWE and RWEC.
Von Neumann applied the rule (16' ) of Section 3.6.1 and concluded

that no corruption would occur. This conclusion is not correct, how-

ever.

Consider the pulses from outputs e and / of the control organ CO
(Figs. 40 and 41). The pulse from e enters CC3 and thereby causes

a coded sequence to enter the main channel; this coded sequence is

decoded in CCi and causes a periodic pulser of RWE to stop. The
pulse from / usually enters CC3 and produces a coded sequence which

eventually starts a pulser of RWE. The pulse from / also usually

enters the top qf the next control organ CO, exits from c (among

other things), and enters CC3 ; this pulse eventually starts a triple-

return counter of RWE. Hence the pulses coming from e and / of a

CO normally cause three coded sequences to enter the main channel

in close succession: the first sequence stops a periodic pulser of RWE,
the second sequence starts a pulser of RWE, and the third sequence

starts a triple-return counter of RWE. For some CO these sequences

would overlap in the main channel if they were not properly delayed

by means of delay paths between RWEC and CC 3 . There is ample

room for these delay paths in RWEC.
A similar problem arises in RWE. Consider the input ux which

feeds the connecting loop Ci . The input ux is fed by both pulsers and

periodic pulsers, and when loop Ci is being lengthened or shortened, a

sequence of pulses from a pulser follows immediately after a sequence

of pulses from a periodic pulser. These sequences must not overlap.

Similar remarks apply to input V\ of loop Ci and inputs u2 and v2 of

loop C2 (see Sec. 4.2 and Table II of Sec. 4.3.2). This undesirable

overlap of sequences can be prevented by adding delays in RWE or

by changing the order of the periodic pulsers and pulsers in RWE.
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These oversights are minor. A more important case of interference

arises in the main channel when the periodic pulsers and triple-return

counters of RWE are being used to lengthen or shorten the connecting

loops Ci and C2 . When the upper half of each loop is very roughly

200 cells long, a periodic pulser PP of RWE is started at about the

same time as a triple-return counter ($1 or <£2 ) emits an output pulse

from its primary output b (Fig. 23). The coded sequence which starts

the PP and the coded sequence coming from the decoder fed by <f>i

or $2 will overlap in the main channel, causing contamination. A
full explanation of this interference problem, and its solution, will

be given in Section 5.1.2.

The proper performance of the activities controlled by each of the

16 organs CO depends upon the observance of certain precisely speci-

fied delays, each one of these delays being specific to the particular

CO involved. Each CO controls a lengthening or shortening operation

on one of the connecting loops Ci or C2 , and this is timed by means

of the other connecting loop and a triple-return counter. We will illus-

trate this point by discussing the delays associated with control

organ C03 ; see Table V and Figures 39 and 41a.

The PP (110110) of RWE which has inputs ui-a+ and Ui-a- must

be turned on for approximately 6n units of time, where xn is the

square of L under scan at the beginning of the process. The quantity

6n is unbounded and hence cannot be stored in the finite automaton

MC. In Section 4.1.7 von Neumann introduced the timing loop C2

to store the quantity 2n. A pulse takes approximately 6n time steps

to travel around loop C2 three times; the delay is not precisely Qn

because the loop C2 is lengthened or shortened before the loop Ci is

lengthened or shortened. These three circuits around C2 are counted

by the triple-return counter <£2 . Clearly, the control interactions

between C03 , on the one hand, and PP (110110) and <£2 on the other,

take considerable time because RWEC is remote from RWE. Similar

remarks apply to the other CO's of RWEC.
We will enumerate the delays included in this control process,

measuring them from the output of the confluent state in the upper

right-hand corner of C03 .

(Ai) Starting from output c of C03 , the delay through CC3 , the

main channel, and CCi
,
ending at input 3>2 -a of RWE.

(A2 ) The delay within <i>2 , the delay between $>2 and input v2 of C2

(this is 52'); the delay between output w2 of C2 and <£2 (this

is b"

)

; and the delay within C 2 . Remember that a pulse goes

around C2 three times. The total delay is 3 (52 + 52 ) + a2 plus
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the desired delay from the turning on to the turning off of

PP(llOllO); see Table III of Section 4.3.2.

(A3 ) Starting from output <£2 -& of RWE, the delay through CQ , the

main channel, and CC2 ; the delay from d to e of C03 ; and the

delay through CC3 , the main channel, and CCi
,
ending with

input Ui'd- of RWE. This is approximately a complete loop

around the memory control MC.
(A4 ) The delay through area D (along delay path <B) of C03 ; the

delay from output b of C03 through CC3 and the main channel

to area Z; the delay through Z, W, and Z again; and the delay

through the main channel and CCi to input Ui-a+ of RWE. The
exact amount of the delay along (B and in Z and W has not been

specified yet.

The memory control MC is 547 cells high and 87 cells wide, and so

the delay around its main channel is considerable. It is clear that

PP (110110) must be started much later than <£2 because of the excess

delay 3 (82
' + 82" ) + o>2 plus the delay from the output of <£2 around

the coded channel of MC, through RWEC, and back down the coded

channel to the stop input Ui»o_ of PP (110110). Hence the delays in

area D (path (B) of C03 and the delays in areas Z and W are indeed

necessary. Similar delays are needed for the other control organs

CO, but the exact amount of delay needed varies with each CO,
because the positions of the CO's in RWEC and the positions of the

PPs and *'s in RWE all vary.

Von Neumann made a lengthy and detailed calculation of the

amount of delay needed in areas D, Z, and W for each CO. These

calculations are exceedingly long and complicated because of the

nature of von Neumann's design procedure. He had not yet specified

the details of the design of MC: the size of area D of CO had not been

fixed and the paths (B in the control organs COi through COi6 had

not been specified ; the exact code of the coded channel had not been

chosen; and the exact locations of the organs of CC2 ,
RWEC, Z,

W, and RWE had not been specified. In particular, the height of

RWE was determined by the height of CCi , and there is in fact

much vacant space in RWE.
Von Neumann made his delay calculations with all these design

parameters unspecified, and then specified these parameters on the

basis of the results of his calculations. This is a very flexible design

procedure, but it makes the calculations tedious and involved.

Moreover, some of the dimensions von Neumann used at this point

were wrong, notably the height of CCi ; see the end of Section 4.3.3.

These errors vitiate most of his delay calculations. For these reasons
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we will not reproduce this part of the manuscript. Instead, we will

summarize his chief results. These results show that von Neumann's

design of the memory control MC does work, after certain modifica-

tions are made in it.

The delays involved depend on design details which are not yet

fixed, and on design parameters which must be altered to correct for

von Neumann's design errors. For these reasons we will give only

very rough estimates of these delays. The delay 3 (52
' + 52

A
') + a 2 ]H

very roughly 000 units. The delay A3 from <J>2 • b of RWE through C03

and back to Ui-a,- of RWE is very roughly 1200 units. Note that

according to von Neumann's calculation of the height of RWE (239

units—cf. Sec. 4.3.3), the upper PP (TToilO) is about 200 units

above <£2 . The extra delay needed in areas D, Z, and W turns out to

be very roughly 2000 units. The variation in delay from one CO to

another is no more than about 100 units.

The common part of the extra delay associated with each periodic

pulser of RWE (i.e., about 2000 units of delay) wT
ill be taken care of

in areas Z and W. The part of the extra delay unique to each CO
(i.e., about 100 units of delay) will be taken care of in the delay area D
of that CO. At the end of Section 4.3.4 area D was allotted width 15,

while its height h was left adjustable. The height of RWEC was

controlled by the height of CC 3 , which is 545. A height of 545 for

RWEC permits h = 21, so h is chosen to have this value. This gives

D of CO an area of 21 X 15, or 315 cells, which is more than enough

to accommodate that part of the extra delay which is unique to each

CO.
Von Neumann now proceeds to design the areas Z and W. He di-

vides W into four equal areas Wi , W2 ,
W3 , and W4 ,

plus a slight

excess. He divides Z into the corresponding parts Zi ,
Z2 ,

Z3 , and

Z4 . Areas Zi and Wx are used to get the extra delay associated with

the upper PP (110110) of RWE, areas Z2 and W2 are used to get

the extra delay needed for the upper PP (110000) of RWE, and so

forth for the other periodic pulsers of RWE.
Take C03 as an example again. C03 controls the upper PP (110110)

of RWE, starting it at input ux -a+ (Figs. 39 and 41a). In the design

of Section 4.3.5, the start pulse leaves C03 at Ui-a+ , is coded in CC3 ,

travels through the main channel, is decoded at CCi , and enters

RWE at input ux
• a+ . This design is to be modified now so as to add

about 2000 units of delay to the path from C03 to RWE; this extra

delay is achieved by running the path through the areas Zi and Wi .

To make this path pass through areas Zi and Wi , we code the output

Ui-a+ of C03 into a new coded sequence Ui*-a+
,
place a decoder for
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Ui*-a+ in Zi ,
place a pulser for Ui-a+ in Zi , and connect the output

of the decoder to the input of the pulser by a long path which travels

through Wi .

The delay path A4 from C03 to input Ui-a+ of RWE is now as

follows. A pulse leaves the confluent element at the upper right-hand

corner of C03 and travels along path (B, exiting at Ui*-a+ , which is

labeled Ui-a+ in Figure 41a. A pulser of CC3 sends a coded sequence

corresponding to Ui -a+ into the mam channel j a decoder in Zi

detects this sequence and sends a pulse through a long path in area

Wi . This pulse stimulates a pulser in Zi which sends a coded sequence

corresponding to Ui-a+ into the main channel. Finally, a decoder

in CCi detects this sequence and sends a pulse into the start input

a+ of the upper PP(llOllO) of RWE.
Since control organs C05 ,

C07 , COi 3 ,
and COi 5 also control the

upper PP(llOllO) of RWE, their outputs Ux-a+ should also be

changed to Ui*-a+ , and the pulsers which they stimulate in CC3

should be changed accordingly.

Similar arrangements should be made for the other CO's of RWEC
and the other parts of Z and W, so that a pulse from an output b

of CO will pass through areas Z and W before starting a periodic

pulser of RWE. For these arrangements coded sequences correspond-

ing to u2 *-a+ ,
Us*-a+ , and ih*-a+ are used.

In short, the following modifications are to be made in the design

of MC as it was left at the end of Chapter 4. The labels Ut-a+ ,

Vi-a+
,
u2 -a+ , and v2 -a+ of Figure 41 are to be replaced by the labels

^i*-a+ ,
Vi*-a+

,
u2 *-a+ , and v2 *-a+ ,

respectively, and the pulsers of

CC3 recoded accordingly. Area Zi has a decoder for Ui*-a+ and a

pulser for Ui*a+, the output from the decoder feeding the pulser

through a long delay path in area Wi . Area Z2 has a decoder for

^i*-a+ and a pulser for Vi-a+ , the former feeding the latter through

area W2 . Similarly, a decoder for u2 *-a+ in Z3 feeds a pulser for u2 -a+

via W3 , and a decoder for v2 *-a+ in Z4 feeds a pulser for v2 -a+ via

W4 .

It will be recalled that von Neumann made an error in calculating

the height of CCi ; see the end of Section 4.3.3. Because of this error

he thought that Wi ,
W2 ,

W3 , and W4 could each be of height 68.

Their widths were to be 29, giving each an area of 1972 cells. He
planned to attain the needed delay by running a path of ordinary

transmission states back and forth through each area. He thus ex-

pected to obtain a delay of 1972 units of time, which is slightly more

than he needed. Moreover, as he observed, additional delays could be

obtained in the areas D of the CO's. However, because of his error
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in calculating the height of CCi , the areas Wi ,
W2 ,

W3 , and W4 can

be of height 45 at most, which does not give enough delay.

There are a number of ways this error can be corrected. The area

W can be extended to the right. The organs of MC can be rearranged

to take advantage of the unused space in X, Y, Z, RWE, and CC2 .

But there are two more elegant ways of making the correction.

In the first place, each of the areas Wi ,
W2 ,

W3 , and W4 can be

designed to give more than 1 unit of delay per cell. Since confluent

states do not feed one another, they can be alternated with ordinary

transmission states to give an average delay of \\ units per cell. An
even larger delay per cell can be obtained by counting processes;

we will indicate one way in which this can be done. The repeater of

Figure 18e (Sec. 3.2.2) will by itself give a periodic sequence of the

form 100- • -00. Let the pulse to be delayed in area Wi start two of

these repeaters, one producing a sequence of length 41 and the other

a sequence of length 47, the numbers 41 and 47 being relatively prime.

Feed the output from both repeaters to a confluent state. After 41 X
47 (= 1927) units of time there will be a coincidence at this confluent

state. The resultant output pulse from the confluent state signals a

delay of 1927 units, and this pulse can be used to turn off the two

repeaters. In this way the delay of roughly 2000 units which von

Neumann needs can be obtained in area Wi , and similarly for areas

W2 ,
W3 , and W4 .

Another way of getting the needed delays in the area W that von

Neumann actually had available is to replace the four delay paths

of area W by a single path. To do this, break the connections from

the main channel to the decoders of Z, and connect each decoder of

Z directly to the pulser of Z which it formerly drove via a delay path

in W. For example, the output from the decoder for Ui*-a+ will now
go directly into the pulser for Ui-a+ ; see how D (11001) feeds

P (10011) at the top of the coded channel of Figure 27. Then make a

branch of the main channel which passes through the top of Z,

goes through W to give a delay of about 2000 units in W, and then

feeds the four decoders of Z.

The design of areas Z and W adds 4 new coded sequences to the

coded channel, those symbolized by Ui* -a+ ,
Vi*-a+ ,

u2 *-a+ , and

v2
*

' -a+ . There are 30 coded sequences associated with the decoders

and pulsers of CCi and 4 coded sequences associated with the de-

coders and pulsers of X. A coded sequence is associated with the out-

put 13 of COh ; otherwise CC2 and CC3 do not add any sequences to

the list already given. Thus the coded channel of the memory control

MC needs 39 different coded sequences. At the end of Section 4.3.3
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we tentatively assumed that a code with sequences of length 9 con-

taining four ones, which allows 56 different sequences, would be

adequate. This assumption is now confirmed.

This completes von Neumann's design of the memory control MC.
The exact code of the coded channel has not been selected, and the

exact positions of many of the organs of MC have not been chosen,

but these are minor matters of detail.

Von Neumann concluded the manuscript by calculating the dura-

tion of the operations of the memory control MC. Equation (17') of

Section 4.1.3 specifies n as the number of the square xn of the linear

array L which is under scan at a given step s. Von Neumann found

the total time for lengthening to be approximately 36n
s + 13,000,

and the total time for shortening to be approximately 48n
s + 20,000.

5.1 .2 Solution of the interference problem. The design of the memory
control MC is now complete and workable except for the interference

problem left unsolved in Section 5.1.1. In the present subsection we
will explain this problem and give methods for solving it.

The problem involves the read-write-erase control RWEC and the

read-write-erase unit RWE. In certain circumstances, a signal from

RWEC to RWE interferes with a signal from RWE to RWEC in

the main channel.

Von Neumann used n to represent the number of the square xn of

the linear array L which is under scan at a given step s. For certain

values of n% a coded sequence used to start a periodic pulser of RWE
will overlap a coded sequence coming from CCi to instruct RWEC to

stop that same periodic pulser. This overlap will occur in the main

channel between CCi and the end. In some cases this overlap will

produce corruption by interference; see formula (16') of Section 3.6.1.

The two overlapping sequences will form a third sequence which will

stimulate a decoder of CC2 that should not be stimulated at this

point in the operation of MC.
This interference problem involves all of the periodic pulsers and

triple-return counters of RWE, but for the sake of concreteness we
will explain it in terms of the upper periodic pulser PP(llOllO) of

RWE and the triple-return counter <£2 used in timing it. Consider

first the operation of PP (110110). It is started with a pulse into its

input U\'d+ at some time r+ and stopped with a pulse into its input

Ui-a,- at some time r_ , where r+ < r_ . Table V shows that r_ — r+

equals approximately Qn. Hence the time of the start at U\ • a+ is given

by

(l)
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Consider next the control of the stop at U\ • a_ . This is controlled

by the pulse from the primary output <£2 -6 of the triple-return counter

$2 at some time n . This pulse must travel from <£2 -6 through CCi
,

the main channel, CC2 , some control organ of RWEC (e.g., C03 ),

the main channel again, and CCi again, to stimulate U\-a_

and thereby stop PP (1101 10). The time required for this transit is

the delay A3 of Section 5.1.1, and is very roughly 1200 units. Hence
the time of the exit from <f>2 -fr of RWE is very roughly

(2) rb = r_ - 1200.

Now compare equations (1) and (2), keeping in mind that n is

the number of the square of L under scan. For n = 0, r+ is about 1200

units larger (later) than r b . For large n% r+ is very much smaller

(earlier) than rb . And for ns equal to about 200, the times r+ and

rb are equal. Hence when ns equals approximately 200, the coded

sequence Ui-a+ will be in the main channel near CCi at about the

same time the coded sequence $>2 • b enters this part of the main chan-

nel. The result will be corruption by interference in the coded channel.

Hence von Neumann's design of MC does not work correctly

when the loops Ci and C2 are of certain lengths. We will give two

different solutions to this interference problem. The first consists in

avoiding the interference by never using those cells of L where it

arises. This may be done by programming MC in such a way that no

value of n less than, say, 250 is used. The cells xo , X\ ,
• • •

, x24g of

L will then never be used. This implies that when MC begins life,

loop Ci will pass through cell x25o and loop C2 has a corresponding

length. And this in turn affects the arrangements for universal con-

struction, as we shall now see.

Von Neumann's arrangements for universal construction are as

follows (Sees. 1.5.2 and 1.7.2.1). Enclose the secondary automaton to

be constructed in a rectangular area of side lengths a and ($. The de-

sired state of each cell (i, j) (i = 0, 1, • • •
, a. — 1; j = 0, 1, • • •

,

iS — 1) of this rectangular area is represented by X t y . The construc-

tion process will leave an arbitrary cell (i, j) in any 1 of the 10 unex-

cited states U, Tua0 {u = 0, 1; a = 0, 1, 2, 3), and C0o (see Figs. 9 and

10), and so is limited to 10 values. The desired construction is

described to the primary (parent) automaton by giving it the se-

quence AoO , Ad >
* * *

>
Xo(0-1) j XlO ,

* * *

,
Xt; ,

* * *
,
X( a_i) (/S_i) .

The secondary automaton to be constructed will in general have

an indefinitely extendible linear array L and a memory control MC
to control it. This being so, von Neumann designed MC so that it

would be rectangular. Now on this first solution of the interference
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problem, MC must be constructed so that initially loop Ci will pass

through cell x25o and loop C2 has a corresponding length. To keep the

rectangular shape of MC, we extend the boundary of MC 250 cells

to the right, making MC 337 cells wide and 547 cells high (see Fig.

37 ) . All but about 1 per cent of the cells in the added area will always

be in the unexcitable state U, which means that this new area is

being used very inefficiently.

Hence while this first solution to the interference problem is worka-

ble, it is most inelegant, and von Neumann would not have been

satisfied with it. For this reason we will suggest a second solution. This

solution is also of general interest because it illustrates some funda-

mental features of von Neumann's cellular structure.

Von Neumann's cellular structure consists of an infinite iterated

array of the same 29-state finite automaton. Any finite number of

these automata can be active at a given time; therefore the cellular

structure is capable of an indefinitely large amount of concurrent

action or parallel data processing. In his design of the self-reproducing

automaton, von Neumann was not taking advantage of the parallel

data processing capability of his cellular structure. Rather, he was
designing the self-reproducing automaton so that for the most part

it would do only one thing at a time. In this respect, von Neumann's
logical design of the self-reproducing automaton is similar to his

logical design of the EDVAC (see pp. 10-11 above). Moreover, when
he did use parallel activity in the lengthening and shortening of loops

Ci and C2 , he ran into timing problems. He needed the delay area

D of each CO (Fig. 40) and the delay area W of MC (Fig. 37) to

postpone the start of a periodic pulser of RWE, and in arranging

for the stop of this periodic pulser he ran into the interference prob-

lem we are now discussing.

This interference problem would not arise if two signal paths

(wires) could be crossed without intersecting; so let us look at the

possibilities for wire-crossing in von Neumann's cellular structure

and variations of it. Wires could cross naturally without touching

in a 3-dimensional cellular structure, but von Neumann wanted to

construct a self-reproducing automaton in 2 dimensions (Sec. 1.3.3.3).

Keeping to his 2-dimensional structure, he could have incorporated a

crossing primitive into each cell. For example, his 29-state automaton

could be augmented by a new primitive consisting of Too* and Toi«/

together, so that information could flow through a cell from left to

right and from bottom to top simultaneously.
1 Von Neumann did not

1 Cellular structures which have crossing primitives are considered

in Church, "Application of Recursive Arithmetic to the Problem of Circuit
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say why he didn't include a crossing primitive among the states of

his basic automaton, but it was probably because he wished to keep

the number of states small.

It is actually possible to synthesize a crossing organ in von Neu-
mann's cellular structure. Such an organ is shown in Figure 42a.

2

The symbolism of this and subsequent figures is somewhat different

from von Neumann's symbolism. A single arrow is used to represent

an ordinary transmission state; later a double arrow will be used to

represent a special transmission state. A dot besides an arrow in-

dicates that the cell is initially active, i.e., is excited at time t = 0.

Figure 42b gives the initial state of each of the five "clocks" of the

crossing organ in von Neumann's notation.

Consider first the behavior of the crossing organ when the inputs

ai and a2 are 000 • • •
. The clocks send alternate zeros and ones into

both inputs of each of the six confluent states C3, C6, F3, F6, El , and

H5. The phasing of the ones (i.e., pulses) as they enter these con-

fluent cells is indicated in Figure 42a by dashed and dotted lines. A
dashed line signifies a one (pulse) at every even time (t ^ 4) and a

dotted line signifies a one (pulse) at every odd time (t ^ 3). It is

clear from Figure 42a that the two sequences arriving at a confluent

state are out of phase. The function of these clock sequences is to

gate the sequences coming into a\ and a4 so that they can cross each

other.

The sequence i0 , ii ,
i2 , is , u , H ,

• * entering a\ is split into two

sequences by the confluent cell A4- The clocks insert ones into

every even position of the upper sequence and into every odd position

of the lower sequence. The odd bits —
, % , —

, iz , — , % ,
• • • are

allowed by the gating pulses to pass along row 3 and out at b\ , while

the even bits i0 ,
—

, i2 ,
—

, u , — , • • are allowed by the gating pulses

to pass along rowT 6 and out at b\ . Similarly, the sequence jo , ji , j2 ,

jz yji,jh, * * * entering a2 is split, with the even bits jo ,
—

, j2 ,
—

,

j
;

4 ,
— , • • • traveling up column C and the odd bits —

, ji ,
—

, jz ,

—
, j 5 ,

• • • traveling up column F. The phasing of the whole system

is such that the sequence jo ,
—

, j2 ,
—

, j* ,
— ,

• • • is interleaved with

io ,
—

, i2 ,
—

, u ,
— , • • • at cell C6 and with — , i\ ,

—
, iz ,
—

,
i$ ,

• •
•

at cell C3. Likewise, the sequence —
, ji , — , j 3 ,

—
, j$ ,

• • • is inter-

Synthesis." Cellular structures which have crossing primitives and also per-

mit the construction of zero-delay paths of unbounded (but finite) length are

discussed in Burks, "Computation, Behavior, and Structure in Fixed and
Growing Automata," Holland, "A Universal Computer Capable of Executing
an Arbitrary Number of Sub-Programs Simultaneously," and Holland, "Itera-

tive Circuit Computers."
2 The crossing organ of Figure 42 was designed by J. E. Gorman.
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leaved with i0 ,
—

, i2 ,

—
, u ,

— ,
• • • at cell F6 and with —

, ix , —

,

ia ,
—

, % ,
• • • at cell F3. For example, the sequences entering and

leaving cell C6 are:

The sequences from cells C3 and F3 are combined in cell El to give

the output jo , ji ,
j'2 , • • • delayed 15 units of time. Similarly, the

sequences from cells F3 and F6 are combined in cell H5 to give the

output to , ii , i2 ,
• • • delayed 15 units of time. In this way informa-

tion passes from a\ to 6i and from a 2 to 6 2 without any cross inter-

ference.

We shall now employ the crossing organ to solve the interference

problem in von Neumann's design of the memory control MC. The
interference occurs when n is very roughly 200. Under this condi-

tion, a coded sequence U\ • a+ ,
v\ • a+ ,

u2 • a+ , or v2 • a+ which is to start

a periodic pulser of RWE interferes with a coded sequence <i>2 *6 or

$i-6 which should eventually (via RWEC) stop this same periodic

pulser. By means of the crossing organ the signal <J>2 -b can be sent

directly from <f>2 to stop an upper periodic pulser of RWE and can

then be sent into the coded channel to signal RWEC that this phase

of the lengthening or shortening of loop Ci is finished. Likewise, the

signal can be sent directly from $i to stop a lower periodic pulser

of RWE and thence into the coded channel. This modification of

von Neumann's design greatly reduces the amount of delay needed

in the delay areas D (of a CO) and W (of MC).
The simplest way to arrange for a direct stop of a periodic pulser

by a triple-return counter is this.

(1) In Figure 39a, exchange the pulser labeled "0.0" with

PP (110000), and invert PP (TlOllO). The stop inputs of both peri-

odic pulsers can now be connected; call the point of connection

Ui-Vi'd- . Similarly, in Figure 39b exchange the pulser labeled "0.4"

with PP (110000) and invert PP(110110); call the common stop

input of these two periodic pulsers u2 • v2 • a_ .

(2) Replace the single column of U states located between the

upward and downward portions of the main channel near the center

of MC by 12 columns of cells. This room will be used for the channels

and crossing organs of (3) and (4) below.

(3 ) Then take the primary output b of <f>i across the main channel

(by means of a crossing organ), down, back across the main channel

(by means of a second crossing organ), into u2 -v2 -a- , and also into

From the left

:

From below

:

Output

:

0 0 10 1 to I 4 1 U • • •

o o o i jo i h i U 1 • •
•

0 0 0 0 0 0 jo io j2 i2 j 4 U " -
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a pulser of CCi (which will signal the appropriate CO of RWEC
that this phase of the lengthening or shortening of loop C2 is finished )

.

(4) Finally, take the primary output b of $>2 across the main channel

(by means of a third crossing organ), up and outside of the channel

of (3), back across the main channel (by means of a fourth crossing

organ), into Ui-Vi-a,-, and also into a pulser of CCi (which will

signal the appropriate CO of RWEC that this phase of the lengthen-

ing or shortening of loop Ci is finished).

These arrangements take only four crossing organs and considera-

bly reduce the delay circuitry of von Neumann's design. But they

raise a problem concerning the construction of the memory control

MC, and hence of the construction of any secondary automaton which

contains an indefinitely extendible linear array L. The construction

process von Neumann envisaged has two stages (cf. Sees. 1.5.2 and

1.7.2.1). First, the primary (constructing) automaton puts each

cell of the secondary area in 1 of the 10 unexcited (quiescent) states

U, Twa0 (u = 0, 1; a = 0, 1, 2, 3), and Coo (see Figs. 9 and 10). Von
Neumann called the result of this process the initial state of the second-

ary automaton. Second, the primary automaton stimulates the sec-

ondary automaton at an appropriate point on its periphery, so that

the secondary may begin its intended activity. Von Neumann called

this starting signal the secondary automaton's starting stimulus.

Thus the secondary automata von Neumann wished to have con-

structed by the primary constructing automaton (i.e., from within

his cellular structure) are all of a special kind: each cell of the second-

ary is initially in 1 of the 10 quiescent states U, TMa0 (u = 0, 1 ; a =

0, 1, 2, 3), and C0o ; and the automaton may be started by a stimulus

on its periphery. With this in mind, we define an initially quiescent

automaton to be a finite area of von Neumann's 29 -state cellular

structure every cell of which is in 1 of the 10 quiescent states U,

TMao ,
and Coo •

Since the crossing organ contains excited ordinary transmission

states and excited confluent states, any automaton containing it is

not initially quiescent. Consequently, the design of the memory
control MC must be further modified so that MC will contain no

excited cells initially, but that before it is used MC will contain the

four crossing organs described above.

The following procedure will work. Further enlarge the area in the

center of MC to allow for the four constructing devices and four de-

coders described below. Modify each of the four crossing organs of

MC as follows: replace each active state (Ton , Cio ,
C0i) of Figure 42

by the corresponding passive state (Toio , C0o , Coo), and delete cells
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A5, B5, C5 (replace them by U's) to make the center clock accessible

from the outside. Then provide, for each modified crossing organ, a

special-purpose constructing device and a decoder to start it. The
constructing device will employ the general procedure for modifying

a remote cell which was described on p. 155 and illustrated in Figure

14; by means of this procedure it can start the five clocks of the cross-

ing organ in phase and rebuild cells A5, B5, and C5. The constructing

device itself will be started by the decoder on signal from the main

channel.

Now arrange for the secondary automaton's starting stimulus to

put a (new) coded sequence into the main channel of MC. This

sequence will be sensed by each of the four decoders, which will in

turn start the four constructing devices. Each constructing device

will send a constructing arm to its crossing organ, start each of the

five clocks of the crossing organ in proper phase, rebuild cells A5, B5,

C5 of Figure 42, and leave the neighborhood of the crossing organ

in the proper state. The memory control MC is then ready to operate,

and the secondary automaton containing it can proceed in its normal

way.

This completes the second solution of the interference problem in

von Neumann's design of the memory control MC. Neither solution

is ideal: the first solution is inelegant, and the second solution is

rather complicated. A radically different and much better approach to

the design of MC will be suggested in Section 5.2.2. However, the

inelegance or complexity of the final design of MC is not directly

relevant to von Neumann's central purpose. Von Neumann was

seeking an existence proof of self-reproduction, that is, a proof that

self-reproduction is possible in his cellular structure (Sec. 1.1.2.1).

The construction of the memory control MC is a step towards this

proof, and for this purpose it suffices that there exists a workable MC.
Let us summarize the results which have been achieved so far.

The unlimited linear array L together with its control MC is a tape

unit with an unlimited memory capacity. It may be constructed

(embedded) in the 29-state cellular structure as an initially quiescent

automaton. Hence, an initially quiescent automaton which performs

the junctions of a tape unit with unlimited memory capacity can be

embedded in von Neumann's 29-state cellular structure.

5.1.3 Logical universality of the cellular structure. Let us next re-

view briefly how von Neumann planned to use a tape unit with un-

limited memory capacity in his cellular structure.

He discussed Turing's universal automaton in the Second Lecture

of Part I of the present work. Early in Part II he stated the five main



266 THEORY OF SELF-REPRODUCING AUTOMATA

questions considered in this part: (A) Logical universality: can any

single automaton perform all the logical operations which are per-

formable with finite (but arbitrarily extensive) means? (B) Con-

structibility: can automata be constructed by other automata? (C)

Construction universality: can any single automaton construct every

other automaton? (D) Self-reproduction: can any automaton con-

struct copies of itself? (E) Evolution: can the construction of automata

by automata progress from simple automata to increasingly com-

plicated automata? Von Neumann stated that Turing had answered

the first question. That is, Turing's universal computing automaton

(machine) is logically universal. Von Neumann then promised to

establish affirmative answers to questions (B)-(D).

In discussing general construction schemes, von Neumann intro-

duced the unlimited memory array L and its "ancillary observation,

exploration, and construction facilities" (Sec. 1.4.2.3). The latter is

the memory control MC, the design of which we have just completed

(Sec. 5.1.2). Let us call the complex L + MC a "tape unit." In

Section 1.4.2.2 von Neumann stated in effect that this tape unit can

be used as the unlimited memory of a constructing automaton, in

Section 1.5 he indicated how to use it as the unlimited memory of a

universal constructing automaton, and in Section 1.6 he indicated

how to use a universal constructing automaton to obtain self-repro-

duction. We will show in Sections 5.2 and 5.3 how these results may
be achieved.

In Section 1.4.2.3 von Neumann stated that the tape unit can be

used as unlimited memory of a logically universal automaton or

universal Turing machine. Earlier, in the Second Lecture of Part I

above, he explained how a universal Turing machine works. And in

Sections 4.1.3 and 4.1.4 he outlined how the constructing unit CU
can operate the tape unit MC + L. Putting all these ideas together,

we will show how to design a universal Turing machine in von Neu-

mann^ cellular structure.

A Turing machine has two main parts: a tape unit with an indefinite

memory capacity, and a finite automaton which can interact with

this tape unit. As outlined in Sections 4.1.3 and 4.1.4 above, a con-

structing automaton has two corresponding parts: a tape unit MC +
L and a constructing unit CU which directs the construction of a

secondary automaton on the basis of the information stored in L.

Thus CU is a finite automaton which interacts with the tape unit

and also performs the function of construction. Hence our task is to

adapt von Neumann's outline for the interaction of CU and MC + L
to cover the operation of a Turing machine.
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A finite automaton FA has a finite number of states a = 1, • • •
, a.

The automaton FA and the tape unit MC + L operate in a succession

of steps 0, 1, 2, 3, • • •
,

s, s + 1, • • • . Let the state of FA at step

number zero be state number one, let xn s be the cell of L under scan

at the beginning of step s, and let £n« (= 0, 1) represent the content

of xn » at this time. The finite automaton FA is then defined by three

functions A, X, and E:

The function A specifies the next state a
s+1

as a function of

present state a and the contents of xn » at the beginning

of step s: a
s+1 = A (a,

The function X specifies the number to be written in xn *

as a function of a and £n* , or equivalently, as a function

ofa'
+1:& 1 = X(as+1

).

The function E specifies the value of the lengthening-short-

ening parameter e
s+1

as a function of a
s+1

: e
s+1 = E{as+l

).

The ranges of arguments and function values are

:

a and a
s+1

range over the finite automaton states 1,2, • • •
,
a;

£n« and range over 0 (representing "0" on xn ) and 1 (representing

"1" on xn );

e
s+1

ranges over +1 (lengthening) and —1 (shortening).

An "initially quiescent automaton" is one in which every cell is

initially in 1 of the 10 quiescent states U, TMa0 , and C0o (Sec. 5.1.2).

We will show next how to embed any given finite automaton FA
in von Neumann's cellular structure, that is, how to construct an

initially quiescent automaton which will simulate FA.

Each of the a states of FA will be represented by a copy of the state

organ SO of Figure 43. The periodic pulsers PP(1) of this figure are

the alternate periodic pulsers of Figure 20, which can be turned off

without harm even when they have not been turned on. These PP (1

)

are not shown to scale in Figure 43; each is actually 13 cells long and

4 cells high. As in Figure 42, single arrows are used to represent

ordinary transmission states.

The finite automaton FA consists of a copies of SO interconnected

by means of a coded channel (Sec. 3.6 and Fig. 27). The specific

interconnections within an FA are determined by its three functions

A, X, and E. Within FA, control is shifted from one state organ SO a

to another state organ SO«' in accordance with the information FA
receives from MC. The automata FA and MC are interconnected

by eight channels. The inputs ii ,
i2 ,

i$ of FA come from the outputs

of MC which are so labeled (Fig. 37) ; the outputs oi , 02 , o 3 ,
o 4 , and

05 of FA go to the inputs of MC which are so labeled.

The relation of the SO's of FA to the coded channel of FA is very
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much the same as the relation of the CO's of MC to the coded channel

of MC (Fig. 37).

We will explain how the composite FA + (MC + L) operates.

At the beginning of step s the following conditions obtain:

(la) A stimulus is arriving at input % of FA, signifying that step

.9—1 has been completed and it is time to begin step s.

(lb) Cell xn» of L is under scan; i.e., MC is connected to xn » via

the connecting loop Ci . The contents of the cell xn » are desig-

nated to be (= 0, 1).

(lc) FA is in state a; i.e., the state organ SOa « of FA is in control.

More specifically, the upper PP(1) of Figure 43 is active. This

periodic pulser has been on (active) while loops Ci and C2

of Figure 37 were being shortened or lengthened at the end of

step s — 1.

The reading process is now inaugurated and control is shifted to

the lower PP(T) of SO a * :

(2a) The pulse entering input % of FA goes via the coded channel

to the input b of each SO of FA. It affects only SO a «
,
turning

off its upper PP(1), and passing through the confluent state

turned on by this PP(1) to exit from outputs j and k.

(2b) The stimulus from exit j goes via the coded channel of FA to

output Oi of FA, and thence to input Oi of MC, where it starts

the process of reading cell xn8 of L.

(2c) The stimulus from exit k of SO a « goes via the coded channel of

FA to input / of this same SO«» , where it starts the lower

PP(T). This PP(I) will be active while cell xn * is being read

by MC.
The tape unit MC + L then reads the contents of cell xn » and

sends the result to FA

:

If £n« = 0 (i.e., xn s stores a "zero")> then a stimulus goes

from output ix of MC to input ii of FA.

If £n« = 1 (i.e., xn s stores a "one")> then a stimulus goes

from output i2 of MC to input i2 of FA.

We state next how these signals affect FA, using brackets to indi-

cate the effects of £n« = 0 and braces to indicate the effects of = 1.

(3a) The [input ii] {input i2 ]
goes via the coded channel of FA to

enter [input d] {inputs e and g) of every SO. These signals

affect only SO a « .

(3b) The pulse from [ii] {i2 } turns off the lower PP(l) of SO a « .

(3c) The pulse from [ii] [i^] into [d] {g} is passed by the [upper]

{lower} confluent state which is turned on by the output of the

lower PP(1), and exits from outputs [Z, m, n] {p, q, r} .
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The pulses from [Z, m, n] {/>, g, r} will determine the next state of

FA, what is to be written in xn s , and whether loops Q and C2 are to

be lengthened or shortened.

The specific connections of these outputs Z, m, n, p, q, and r are

determined by the three functions A, X, and E which characterize

the given finite automaton FA. For each state organ SO«« (a =

1,2, • • •

,
a), these connections are made as follows:

(4a) The pulse from [I] {p} goes via the coded channel of FA to

input c of SO«*+i , where a
s+1 = A (a

8

, £n*)-

(4b) The pulse from [m] {q} goes via the coded channel and outputs

of FA to:

input o2 of MC if £„
s+1 = 0 (i.e., "0" is to be written in xn«)>

input o3 of MC if £n
s+1 = 1 (i.e., "1" is to be written in xn *),

where £n
s+1 = X(as+1

).

(4c) The pulse from [n] {r} goes via the coded channel and outputs

of FA to:

input 04 of MC if e
s+l = 1 (i.e., loops Ci and C2 are to be

lengthened),

input ob of MC if e
s+1 = —1 (i.e., loops Ci and C2 are to

be shortened),

where e^
1 = E(a8+1

).

This completes our construction of an arbitrary finite automaton

FA in von Neumann's cellular structure, except for specifying the

state for step s = 0. This state was stipulated to be state number one

and hence is represented by the state organ SOi . If the confluent

cell in the upper right-hand corner of SOi were initially in the state

Cio ,
starting pulses would emerge from exits j and k of SOi . These

pulses would stimulate pulsers of the coded channel which in turn

would inject coded sequences yj and yk into the main channel, and

FA would then operate as described above. However, such a device

would not be an initially quiescent automaton, for its initial state

would contain one cell in a state other than U, Twao , and Coo . To
make FA initially quiescent, we merely arrange for its starting

stimulus to stimulate pulsers of the coded channel which will also

inject the coded sequences yj and yu into the main channel of FA.

This concludes our demonstration that an arbitrary finite auto-

maton can be embedded in von Neumann's cellular structure as an

initially quiescent automaton. We saw at the end of Section 5.1.2

that a tape unit with unlimited memory capacity can be embedded

in this cellular structure as an initially quiescent automaton. Hence

any arbitrary Turing machine can be embedded as an initially
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quiescent automaton, and a fortiori a universal Turing machine can

be embedded as an initially quiescent automaton.

It should be noted that all these embedded devices will operate

slowly with respect to the temporal reference frame of the cellular

structure. This temporal reference frame consists of the discrete time

steps t = 0, 1, 2, • • •
, and the fundamental operations of the 29-state

automata of the cells take place in this reference frame (Sees. 1.2.1

and 1.3.3.5). The finite automata and Turing machines which are

embedded in the cellular structure operate in this temporal reference

frame too, but the succession of steps s = 0, 1, 2, • • • takes place

more slowly. In general, each of the steps s takes several time units

t. In the case of a tape unit MC + L, the steps s take longer and

longer as the loops Ci and C2 get longer and longer.

Finite automata and Turing machines are usually regarded as

devices which accomplish one step s in one unit of time t. In other

words, s = t, and the machines perform their computations in "real

time." The initially quiescent automata of von Neumann's cellular

structure which simulate finite automata and Turing machines do

not operate at the same rate as the devices they simulate, but they

compute the same results.
3

Von Neumann's main aim was to achieve construction, construc-

tion universality, and self-reproduction in his 29-state infinite cellular

structure (Sec. 1.1.2.1). Let us summarize what has been accom-

plished so far, and how it bears on his main aim.

We have shown how to embed in von Neumann's 29-state cellular

structure an initially quiescent automaton which performs the computa-

tions of a universal Turing machine. Hence this cellular structure is

logically universal.

In planning his universal constructing automaton, von Neumann
was guided by the parallel notion of a universal computing machine.

His universal constructing automaton will operate like a universal

computing machine, the chief difference being that the output of the

computing machine is a computation, while the output of the con-

structing automaton is a sequence of signals which constructs an

initially quiescent secondary automaton. A universal computing

machine Mu is a complex FA + (MC + L) with this property:

3 The real time performance of an automaton is usually called its "behavior"
and is to be contrasted with the computed answer or "computation" of an
automaton. For a discussion of behavior and computation in finite and infinite

systems see Burks, "Toward a Theory of Automata Based on More Realistic

Primitive Elements," McNaughton, "On Nets Made up of Badly Timed
Elements," and Holland, "Universal Embedding Spaces for Automata."
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for each Turing machine M, there is a coded description C£>'(M )

such that, when £)'(M) is stored on L, Mu will simulate M, that is,

Mu will compute the same result that M computes. Analogously, the

universal constructor Mc is a complex CU + (MC + L) with this

property: for each initially quiescent secondary automaton M, there

is a coded description £)(M) such that, when 3D(M) is stored on L,

Mc will construct M. 4

Thus the essential step remaining in von Neumann's program to

achieve construction, construction universality, and self-reproduction

in his cellular structure is to design the construction unit CU.

5.2 The Universal Constructor CU + (MC + L)

5.2.1 The constructing arm. Von Neumann's universal constructing

automaton consists of a constructing unit CU combined with a tape

unit MC + L (Sec. 4.1.1). He calls this the "primary automaton/'

and he calls the initially quiescent automaton to be constructed the

"secondary automaton" (Sec. 1.4). Since the tape unit has been

designed (Sec. 5.1.2), it remains to design the constructing unit.

We will first discuss the overall arrangements for construction. See

Figure 50. This figure is not drawn to scale, the universal constructor

being very much larger than shown here (cf. Fig. 37). Also, the loop

for reading L is not shown, nor the arrangement for lengthening and

shortening the loop (cf. Figs. 37 and 51).

Some point on the universal constructor is designated as the origin

(0,0) of a coordinate system for locating the secondary automaton.

The secondary automaton occupies a rectangular area of width a

and height (3, the lower left-hand corner of which is located at Xi , yi

with respect to the origin (Fig. 50).
5
For the sake of simplicity we

will confine the secondary automaton to the first quadrant, so that

Xi ^ 0 and yi ^ 0. The internal structure of the secondary automaton

is completely characterized by the sequence for i = 0, • • •

,

a — 1 and j = 0, • • •
, /3 — 1, where each A t y specifies one of the

quiescent states U, TMa0 (u = 0, 1; a = 0, 1, 2, 3), and Coo

.

4 Compare the discussion of a universal Turing machine in the Second Lec-
ture of Part I with the discussion of the universal constructor in Sec. 5.3.1

below. See also Burks, "Programming and the Theory of Automata.

"

The description of 3D'(M) which is given to a universal Turing machine is

usually coded differently than the description 3D(M) which is given to a uni-

versal constructor. is coded in terms of the states of the finite part of

M, whereas 3D(M) is coded in terms of the initial states of the cells of M. See
the next section.

5 Cf. Sec. 1.5.2. In von Neumann's reference system, a point such as (xi ,

yi) is located at the center of a cell rather than at a corner of a cell.
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The general procedure for construction is this. A coded representa-

tion of Xi
, yi ,

a, 0, and the X tj is placed on the linear array L. The
constructing unit CU reads this information with the aid of the

memory control MC, interprets the information, and acts on it. The
primary automaton operates on the (possibly remote) secondary

area by means of a "constructing arm" or information path which

extends from the primary automaton to the secondary area. The
constructing unit CU first builds the constructing arm out to the

secondary area. Then CU sends signals down the arm which con-

struct the secondary automaton and provide its starting stimulus.

Finally, CU withdraws the constructing arm.

It is clear that the first step in designing the constructing unit

CU is to design the constructing arm which will be operated by CU
under control of the information received from the tape unit MC + L.

Actually, we have essentially used such a constructing arm before.

Figure 14 illustrates a procedure for extending a constructing path,

modifying a remote cell, and withdrawing the constructing path.

This same procedure is used for lengthening and shortening the loops

Ci and C2 and writing in cell xn of the linear array L (Sec. 4.2 and

Figs. 32-36). In this case, the upper half of each loop constitutes

the constructing path.

In both of these cases a single path of transmission states (some-

times ordinary, sometimes special) goes from the constructing device

to the area of construction. For this reason we will call this von Neu-

mann's "single path construction procedure." Let us look at this

procedure in detail to see if it can be employed for the constructing

arm needed now.

The construction of the secondary automaton takes place at the

end of the constructing path, in accordance with the rules summarized

in Figure 9. The two processes involved are the direct process (for

construction) and the reverse process (for destruction). Destruction

is as necessary as construction, for the operating terminus of the

construction path can be withdrawn only by changing a transmission

state Twao into an unexcitable state U. Construction can be accom-

plished in a given cell by feeding pulses into this cell from either an

ordinary or a special transmission state, but destruction requires the

proper kind of transmission state: special kills ordinary but not

special, and ordinary kills special but not ordinary. This distinction

is necessary if information signals are to be distinguished from de-

struction signals (Sec. 2.6.2.2).

Thus the operations at the end of the constructing path sometimes

require special transmission states and sometimes require ordinary
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transmission states. In Von Neumann's single path construction

procedure this is accomplished as follows. The beginning of the

construction path is fed by both an ordinary transmission state (e.g.,

cell Bl of Fig. 14) and by a special transmission state (e.g., cell BS
of Fig. 14). Whenever the cell at the operating end (head) of the

constructing path needs to be changed from an ordinary transmission

state to a special transmission state (or vice versa), the whole path

is changed from ordinary transmission states to special transmission

states (or vice versa). Compare Figure 32a with Figure 32b (and

Figure 32c with Figure 32d).

Each change of the single construction path from ordinary trans-

mission to special transmission states (or vice versa) requires a pulse

sequence of length proportional to the length of the path. For example,

each such modification of the upper half of loop Ci (and of loop C2 )

was accomplished with a sequence of length 6n, where n is the number

of cells to be changed. The number n was represented by the loops

Ci and C2 , each of these loops being approximately 2n cells long.

A delay of 6n units was obtained by using a triple return counter

with a loop (Ci or C2 ) as its responding organ (Sec. 4.2).

This single path construction procedure could be used for the

constructing arm which is operated by the universal constructor.

The arm would consist of a single path of transmission cells (some-

times ordinary, sometimes special) going from the universal con-

structor to the secondary area, and fed by both ordinary and special

transmission states. Let I be the number of cells in this single path.

To change this path from ordinary to special transmission states

(or vice versa), CU would send a sequence of length 6^ into it. CU
could determine I from the numbers x\

, yi ,
a, 0, i, j, which specify

the location and size of the secondary automaton as well as the precise

place within the secondary where the constructing arm terminates.

The numbers Xi , yx ,
a, and (i are stored as L in explicit form, and

CU could infer i and j by counting the position of XtJ in the sequence

of X's.

Though von Neumann could have used the single path construc-

tion procedure for the constructing arm, he actually planned to use a

different, and better, procedure. Four pages of rough notes accom-

panied his manuscript "Theory of Automata: Construction, Repro-

duction, Homogeneity,' ' which constitutes the present Part II of the

present volume. These pages contain his design for a constructing

arm and an outline of a program for controlling it. His program is too

sketchy to be reconstructed, but his intended design of the construct-
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ing arm is plain enough, and once this is known it is not difficult to

write a program for it.

Von Neumann's constructing arm is shown in Figures 44-50.

Ordinary transmission states are represented by single arrows, and

special transmission states are represented by double arrows. This

constructing arm consists of two adjacent, parallel paths, terminating

at a head in which one path normally points at the other path. One
path is of ordinary transmission states, and the other path is of special

transmission states. Thus, both ordinary and special transmission

states are always available at the head for the reverse (destruction)

process. This being so, it is never necessary to change a whole path

from ordinary to special transmission states or vice versa, as in the

single path construction procedure.

The constructing arm may be fed by the constructing unit CU
either from the left (using inputs s and o of Fig. 44) or from below

(using inputs s and o of Fig. 44). The arm may turn a corner, as in

Figure 50.

Von Neumann's procedures for operating the arm, slightly modi-

fied, are shown in Figures 44-50. We use a new method of symbolizing

pulse sequences in these figures. A pulse sequence which destroys

and constructs is represented by a sequence of symbols indicating

the quiescent states produced by this pulse sequence.

We will explain this method of symbolizing pulse sequences in

connection with the transition from Figures 45a-45b. If the following

pulse sequences are fed into s or s from special transmission or con-

fluent states, they produce the effects indicated.

1110 changes cell CI from U to H

1101 changes cell C2 from U to <=

I changes cell B2 from f to U
10000 changes cell B2 from U to

Thus 11101101110000 into s or s is indicated by

II <= U —» into s or s .

This method of symbolizing pulse sequences must be used with the

constraints of von Neumann's transition rule in mind (Ch. 2). For

example, the sequence

II H U into s or s

is not an allowable sequence for Figure 45b, because one special

transmission state cannot kill another special transmission state.

However, if the appropriate conditions are satisfied, a single pulse
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will change a cell into a U. Likewise, if the appropriate conditions are

satisfied,

10000 changes U into ->

10001 changes U into ]

1001 changes U into <—

1010 changes U into [

1011 changes U into =»

1100 changes U into tt

1101 changes U into

1110 changes U into Jl

1111 changes U into C.

Figures 45 and 46 show the procedure for advancing the construct-

ing arm 1 unit, either horizontally or vertically. Figure 47 gives the

procedure for withdrawing the arm 1 unit horizontally and leaving

the two vacated cells in the desired quiescent states y and 5. The
pulse sequences used for y and 8 depend, of course, on the quiescent

states desired. For example, if the variable y has the value C, the

sequence fed into Figure 47e becomes

U => U C into s or s.

This expression represents

1101111111 into s or s.

Figure 48 gives the procedure for withdrawing the constructing arm
one unit vertically and leaving the vacated cells in the desired quies-

cent states 7 and 5. Figure 49 shows how to inject a starting stimulus

into the secondary automaton.

This completes the description of von Neumann's five operations

for the constructing arm: horizontal advance, vertical advance,

horizontal retreat with y-5, vertical retreat with y-d, and injection

of the starting stimulus. These operations suffice for the construction

of any initially quiescent automaton in the first quadrant (i.e., with

^i^0 and yi ^ 0). We will now state an algorithm composed from

these operations which achieves this result.

This construction algorithm presupposes that /3 is an even integer.

If p is odd, a row of U's can be added to the secondary to make
even, or the algorithm may be modified slightly. The algorithm also

presupposes that the secondary's starting stimulus is to be injected

from below into the cell whose center is at (xi + \ , yi + \). Other-

wise, the instructions must be modified.
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The algorithm for constructing and starting a secondary automaton

on the plan of Figure 50 is

:

(1) The constructing arm is extended from the primary automaton

to the upper left-hand corner of the area of the secondary autom-

aton. This requires x\ + 2 horizontal advances and then yi + f3

vertical advances.

The constructing arm is now ready to advance to the right of the

secondary area and then to retreat, constructing two rows of the

secondary as it retreats.

(2) The following sequence of operations is repeated times.

(a) The horizontal advance is repeated a — 2 times.

(b) The horizontal retreat with y-d is repeated a — 2 times.

(c) The vertical retreat with y-d is repeated twice.

At the end of operation (2) the secondary automaton is complete

and may now be started.

(3) A starting stimulus is injected from below into the cell located

at Oi + }).

The secondary automaton now begins to operate, and the construct-

ing arm may be withdrawn.

(4) The constructing arm is withdrawn to the primary automaton by

yi vertical retreats with 7-5 followed by X\ + 2 horizontal re-

treats with 7-5, both y and b always being the unexcitable state

U.

This concludes the algorithm. The constructing arm could now be

used to construct another secondary automaton.

The pulse sequences which execute this algorithm are injected into

inputs s and o of the constructing arm. These pulse sequences are a

function of the information stored on the linear array L. The way
the universal constructor transforms the passive information on L
into the correct pulse sequences will be explained in Section 5.2.3.

Von Neumann's five constructing arm operations are adequate for

construction in the first quadrant, but not for construction in the

other quadrants. However, it is not difficult to redesign the head and

to program operations for advancing to the left, retreating from the

left, advancing down, etc. With these additional operations, the uni-

versal constructor could construct a secondary automaton in any

quadrant of the plane. This presupposes, of course, that the area for

the secondary automaton consists of unexcitable states, that there

is a sufficiently wide path of unexcitable states from the universal

constructor to this area, and that no other automaton interferes with

the construction process.

It is clear from Figures 45-49 that the execution of each of von
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Neumann's five constructing arm operations is accomplished by a

finite pulse sequence. The longest sequence needed is that for a

vertical retreat with y-8 ; if y and 5 are either —-> or f , this operation

requires a sequence of length 47. Thus the length of the pulse sequence

required for each of these five operations is a constant, independent

of the length of the constructing arm. In contrast, von Neumann's
one-path construction procedure requires a pulse sequence whose

length depends on the length of the path; if i is the length of the path,

a sequence of length bt or greater is required. In this respect, von

Neumann's two-path construction procedure is far superior to his

one-path construction procedure. This superiority can have a pro-

found effect on the organs supplying the pulse sequences for construc-

tion, as we shall now see.

5.2.2 Redesign of the memory control MC. Von Neumann's two-

path construction procedure can be used for operating the linear array

L. The new arrangement is shown in Figure 51 ; it should be compared

with the old arrangement of Figure 37.

The path for reading cell xn starts at input v, extends along row

1, passes through cell xn , returns along row 4, and terminates at

output w. Row 1 is also the ordinary transmission path of the two-

path constructing arm. Row 2 is the special transmission path of the

constructing arm. The head of the constructing arm consists of cells

C2, Dl, and D2\ it differs slightly from the head of Figure 44a. The
stimuli into inputs u and v must come from ordinary transmission

states. Note that cells Al and A2 do not affect each other, since a

confluent state does not feed a confluent state.

The reading process is exactly the same as before (Sees. 4.1.1 and

4.1.5). The sequence 10101 is injected into v from a pulser P (10101).

This sequence will travel along row 1, down column D, and into

cell xn . What happens next depends upon whether cell xn is in state

U, signifying a "zero," or in state j ,
signifying a "one."

(1 ) If cell xn is in state U, the first part 1010 of the sequence changes

xn into \ , and the remaining part T of the sequence travels

back along row 4 and out at exit w.

(2) If cell xn is in state j , the complete sequence 10101 travels

through xn , back along row 4, and out at exit w.

Thus a T at w signifies a "zero," while a 10101 at w signifies a "one."

These two sequences may be discriminated by means of the T vs.

10101 discriminator (Sec. 3.5 and Fig. 25), as before.

At the end of the reading process, the reading and constructing

paths are left as in Figure 51b, with cell xn in state [ . The next step

is to lengthen or shorten the reading and construction paths of L,
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and to leave cell xn in state U (representing a "zero") or state [

(representing a "one"). There are four alternatives:

(LO) Lengthen and leave cell xn in U
(LI ) Lengthen and leave cell xn in [

(50) Shorten and leave cell xn in U
(51 ) Shorten and leave cell xn in

J,
.

These operations are similar to the operations of horizontal ad-

vance (Fig. 45), vertical advance (Fig. 46), horizontal retreat with

y-8 (Fig. 47), and vertical retreat with y-d (Fig. 48). We will give

the pulse sequences for only one case, that of (LI), i.e., lengthening

and leaving cell xn in { . These are given in Figure 52, where the

method of symbolizing sequences is the same as in the earlier figures.

For example, starting with the situation of Figure 52a, the sequence

1111011110110111001 of ordinary stimuli into u passes through the

confluent state into the row of special transmission states and travels

down this row. This sequence changes cell xn , the cells above and

below it, and the cell below xn + 1, into II , Ji
,
=>, and <—

,
respec-

tively. Figure 52b shows the situation produced by this sequence.

Thus this operation (LI) is accomplished by sending a sequence

into u, then a sequence into v, another sequence into u, and another

sequence into v. Since the absence of a stimulus is represented by
"0," this operation can be accomplished by sending simultaneously

a sequence into u and a sequence into v\ see the example of Figure

14 and Section 2.8.3. These two sequences can be produced by pulsers

which feed into u and v and which are stimulated in the proper phase

relative to one another (Sec. 3.2.1). The other lengthening, shorten-

ing, and writing operations (L0), (SO), and (SI) can be handled

similarly.

It is important that each of the operations (L0), (LI), (SO), and

(SI) may be accomplished by pulse sequences whose lengths are

independent of the lengths of the construction paths, i.e., independent

of the index n of the cell xn which is under scan. In contrast, von

Neumann's method of operating the linear array L requires pulse

sequences whose lengths depend on the length of the construction

path (Ch. 4). As a consequence, the memory control for the new
method of operating L can be much simpler than von Neumann's

memory control MC (Figs. 37, 39-41). In particular, those aspects

of von Neumann's MC concerned with obtaining and controlling a

delay of 6n (where n is the subscript of xn ) are unnecessary in the

new method.

Since von Neumann's design of MC, as modified in Section 5.1.2,
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does work, we will not redesign MC here. The read-write-erase unit

RWE for the new method of operating L can be constructed from

nine pulsers and a I vs. 10101 discriminator, suitably arranged. By
recoding and simplifying the control signals which pass between MC
and the constructing unit CU, one can eliminate the read-write-

erase control RWEC, so that MC will consist only of the simplified

RWE unit and a coded channel.
6

At this point I should like to speculate on von Neumann's thoughts

concerning his design for a self-reproducing automaton at the time

he stopped working on the manuscript reproduced as Chapters 1-4

above. His design had turned out to be much more complex than

he had anticipated.
7

After developing his two-path construction

procedure, he must have realized that it could be used on L, and

that this would greatly simplify the design of MC and of the whole

machine. Realizing this, he would have wanted to redesign his self-

reproducing automaton along new lines. This redesign would have

entailed revising Chapter 3 above and starting Chapter 4 afresh.

Von Neumann never found the time to revise and complete the

manuscript in this way.

Even though von Neumann's design of the memory control MC
can be greatly improved, it is nevertheless important. Historically,

it constitutes the first proof that a tape unit with unlimited memory
can be embedded in his 29 -state cellular structure. Moreover, it con-

tains many ingenious design techniques for parallel data processing

in this cellular structure.

5.2.3 The constructing unit CU. After he had designed the con-

structing arm, there remained for von Neumann the task of designing

the constructing unit CU itself. As he recognized, CU is a finite

automaton which interacts with the tape unit MC + L and also

6 The complete design of a memory control for a variant of the new method
of operating L is given in Thatcher's "Universality in the von Neumann Cellu-

lar Model."
7 In a letter to Miodrag Muntyan of the University of Illinois Press, dated

Nov. 4, 1952, von Neumann says of his manuscript:
I have written so far the first chapter, which amounts to about 40 type-

written pages. ... I am now working on the second chapter which, I

expect, will be somewhat longer, perhaps about twice as long. I will

also have a third chapter and possibly a fourth one, but the length of

these is still uncertain. Also, when the whole is finished, I will have to

go over the entire text once more, and this operation is likely to in-

crease the length some more.
Compare this with von Neumann's letter to Goldstine in Sec. 1.1.2.3 above.

These statements show that after completing Ch. 1 above, von Neumann
thought he could develop the design (starting with Ch. 2 above) in a chapter
about twice as long as Ch. 1.
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performs the function of construction. Hence the same kinds of

organs and design principles used in the design of the memory control

MC (Ch. 4) and an arbitrary finite automaton FA (Sec. 5.1.3) can

be used to design CU. Since von Neumann was a skilled designer and

programmer,
8
he undoubtedly saw how to design the constructing

unit CU, and he may even have had a quite specific design plan in

mind.

While it is not appropriate for us to work out the full design here,

we will say enough to show that a workable constructing unit CU
does in fact exist. A complete design for a constructing unit (as well

as for a universal constructing machine) is given in James Thatcher's

"Universality in the von Neumann Cellular Model."
9

Von Neumann discussed the process of constructing several sec-

ondary automata (Sec. 1.7), but it will suffice here to explain the

construction of a single secondary automaton in the first quadrant.

The information concerning the location and size of the secondary

automaton, as well as a complete description of the secondary autom-

aton, is stored on the linear array L, as in Figure 50. First comes a

period. Then come the location and size parameters Xi
, yi ,

a, and /3,

each followed by a comma. Next comes the sequence of Xf/s describing

the secondary automaton cell by cell, for i = 0, • • •
, a — 1 and

j = 0, • • •
, j8 — 1. For the sake of simplicity we assume that the

X»/s are stored in the order in which they are used by CU. The se-

quence of Xt/s is terminated by a period, which also marks the end of

the information on the tape.

This information may be coded in an alphabet of 14 characters:

zero, one, comma, period, and 10 values of the . These 10 values

of the \{j correspond to the 10 quiescent states Tuao {u = 0, 1 and

a = 0, 1, 2, 3), C0o , and U. These 14 characters may be represented

by four binary digits (bits). It is convenient to avoid the all zero

sequence "0000." It is also convenient to employ a fifth bit position

for marking purposes. Thus each character is represented by a total

of five bits and is stored in five successive cells of the linear array L.

The number x\ will be represented by a sequence of X\ + 1 of the

five-bit characters representing "one," and similarly for the numbers

8 See pp. 6-15 of the "Introduction" to the present work, as well as Chs.

3 and 4.

9 See also Codd, "Propagation, Computation, and Construction in Two-
Dimensional Spaces." This contains a design for a universal constructing

machine in a cellular system in which each cell has four immediate neighbors,

but only 8 states, as contrasted with von Neumann's 29 states. Dr. Thatcher
and Dr. Codd were acquainted with von Neumann's manuscript "The Theory
of Automata: Construction, Reproduction, Homogeneity" in manuscript form.
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7/1 ,
a, and 13. This method of representation can clearly be improved,

but it will simplify our discussion to represent all information in the

same alphabet.

Let 00 , 0i , 02 , #3 , 04 be the five bits of a character, with 0O being

the marker bit. The constructing unit CU must be capable of inter-

preting the sequence 0i , 02 , 03 , 04 as a unit. Suppose, for example,

that Coo is represented by -1010 on L, where the dash indicates the

position of the marker bit. If the character X t y on L is -1010, CU must
put cell (i, j) of the secondary automaton in state C0o at the appro-

priate stage of the construction process. CU will accomplish this by
replacing y or d in the sequences for horizontal or vertical retreat

(Figs. 47 and 48) by the sequence 1111, which is the sequence re-

quired by the transition rule (Fig. 10) for constructing C0o . Hence
CU must interpret the tape character -1010 as calling for the sequence

1111 in the appropriate context.

Now the four bits of 0i ,
02 , 03 , 04 are stored in successive cells

Xn+i ,
xn+2 ,

£n +3 , #n+4 . When CU so instructs MC, MC will read a

cell and advance the reading loop to the next cell. The amount of

time required for this process is a linear function of the index n.

Consequently, the four bits 0X ,
02 , 03 , and 04 are received by CU at

widely varying times. In von Neumann's terminology (Sec. 3.1.1),

the sequence 1010 comes to CU freely timed, and in response CU
must send the rigidly timed sequence 1111 down the construction

arm. The four pulses of 1111 must enter the constructing arm at

successive times (r, r + 1, r + 2, r + 3), since rigid timing is re-

quired by the direct process.

Hence the constructing unit CU must be able to convert the freely

timed sequence 0i , 02 , 03 , 04 (e.g., 1010) into a rigidly timed sequence

(e.g., 1111). This may be accomplished in either of two ways.

The first method employs state organs like Figure 43. Associate

with the 16 characters 0i020304 30 state organs SO0 , SOi ; SOoo , • • •
,

SOn ; SOoooo , • • •
, SOmi , which are to be interconnected by the

coded channel of CU. These organs are activated (take control)

under the influence of the bits 0X ,
02 ,

03 , 04 in the following manner.

When 0i is transmitted by MC to CU, it has this conditional effect: if

0i is zero, SOo is activated; while if 0X is one, SOi is activated. Next,

the bit 02 shifts control from SO0 or SOi to one of the state organs

SOoo , SOoi , SOio , SOn according to the rule: if 02 is zero, SO^o is ac-

tivated, while if 02 is one, SO^i is activated. That is, after CU has

received the two bits 0X and 02 from MC, the state organ SO^t,
will be "in control. " This process is repeated for the remaining bits 03

and 04 , so that after all bits of 0i020304 have been read from L, ex-
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actly one of the 16 state organs SOe^e^ of CU will be activated.

This state organ then controls the selection of a rigidly timed se-

quence. For example, the state organ SO1010 will cause 1111 to be

substituted for y or 8 in one of the constructing sequences of Figures

47 and 48.

The conversion of the freely timed sequence 1010 into the rigidly

timed sequence 1111 is a static-dynamic conversion. Our second

method of making this conversion employs the static-dynamic con-

verter of Figure 53, together with four state organs SO1

,
SO2

,
SO3

,

and SO4
to keep track of the four digit positions 0i , 02 , 03 , and 04 ,

respectively. The inputs and outputs of the static-dynamic converter

and of these four state organs are all connected to the main channel

of CU. The periodic pulsers of Figure 53 are copies of the alternate

periodic pulser PP(T) of Figure 20. The organs in the left-hand col-

umns of Figure 53 are all decoders which receive their inputs from

the main channel. The figure is not, of course, drawn to scale.

The static-dynamic converter and the four state organs SO1

,
SO2

,

SO3

, SO4
convert a freely timed sequence 0i ,

02 , 03 , 04 into the

corresponding coded rigidly timed sequence in the following way.

At the beginning of this conversion the state organ SO1

is in control

and directs the reading of 0i . After 0i is read by MC from L it is

transmitted to CU: a pulse from exit ii of MC (Fig. 37) signifies that

0i is "zero," a pulse from exit i2 of MC signifies that 0i is "one."

Under the control of SO1

, the pulse signifying "one" is coded into a

sequence which is recognized only by the Starti decoder of Figure 53

(input di) and control is transferred to SO2
. Hence if 0i is "one," the

PP(T) for 0! is activated, while if 0i is "zero," the PP(1) for 0X is left

in the inactive state.

Similarly, bit 02 is transferred to the PP (T) for 02 by means of state

organ SO2
and the Start2 decoder of Figure 53. The bits 03 and 04 are

handled in the same way. Hence, after the character -01020304 has

been read by MC from L and transmitted to CU, the periodic pulsers

of the static-dynamic converter represent 0i020304 , the j'th periodic

pulser being off or on according to whether 0y is "zero" or "one"

(j = 1, 2, 3, 4). The control unit CU next directs the conversion of

this static information into a rigidly timed sequence.

The static representation of the character —0i020304 is converted

into the corresponding dynamic sequence 0i020304 by a single pulse

sequence of the main channel which is recognized by the conversion

decoders Di ,
D2 ,

D3 , and D4 of Figure 53. The operation of each

decoder Dy is as follows, for,; = 1, 2, 3, 4. Dy emits a pulse which is

delayed in Ay and then impinges on the confluent state of column A,
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row j. If the PP (1 ) for 6j is on, this pulse is passed and enters channel

B; otherwise, this pulse is blocked and does not enter B. The pulse

sequence of the main channel which is recognized by the decoders

Di , D2 ,
D3 , and D4 enters these four decoders at different times. But

the delays Ai ,
A2 ,

A3 , and A4 can be adjusted so that the pulses

which do enter channel B are in proper phase. For example, if 61 ,

62,63, and 64 are all one, the sequence 1111 will be emitted from

output g.

Since the all-zero sequence is not used to represent any character,

61 ,
62 , 03 , and 64 cannot all be zero, and at least one stimulus will be

emitted from g. Hence, stimulation of the conversion decoders Di
,

D2 ,
D3 , and D4 will cause the rigidly timed sequence 61626264 to leave

the static-dynamic converter at exit g. The periodic pulsers of the

static-dynamic converter can then be "cleared" back to the inactive

state by stimulating the four stop decoders, whose inputs are labeled /.

This completes the discussion of the two methods for converting a

static tape character into a dynamic sequence. The second method

requires less apparatus than the first.

We now have a method for reading characters from the tape. At

the end of Section 5.2.1 we gave an algorithm for constructing and

starting a secondary automaton. This algorithm describes the pulse

sequences to be injected into the constructing arm as a function of the

information X\
, yi , a\ , j8, A 0o , • •

, Aa-i, 0-1 stored on L. The design

of the constructing unit CU now becomes the task of translating this

algorithm into a machine design. We restate this algorithm here,

showing how CU obtains the necessary information for the construc-

tion from the linear array L. We assume that initially the reading

loop of L passes through cell x0 ,
i.e., through the marker bit of the

leftmost period on L.

The revised algorithm for constructing and starting a secondary

automaton (see Fig. 50) is:

(1) CU extends the constructing arm from itself to the upper left-

hand corner of the area of the secondary automaton. This is

accomplished by the following two sub-operations:

(a) CU sends pulse sequences into the constructing arm for

Xi + 2 horizontal advances. The pulse sequences for each

horizontal advance are given in Figure 45. CU senses a

character (tally) of Xi on L, sends the sequences of Figure

45, and then moves right to the next character on L. When
CU reads the comma on L, it sends pulses for two more

horizontal advances, and then goes to execute sub-opera-

tion (b).
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(b) CU sends pulse sequences into the constructing arm for

+ vertical advances. It does this as follows. CU senses

each character (tally) on L, sends the sequences of Figure

46 to the constructing arm, and advances to the next

character on L. When CU reaches the comma on L, it

passes over a to 0, sends the sequences of Figure 46 for

each character of 0, and then returns to the comma pre-

ceding a.

The constructing arm is now in position to begin construction.

CU constructs two rows of the secondary automaton at a time, and

must do this 0/2 times. CU keeps count of these operations by mark-

ing the marker positions of the characters of 0.

(2) CU senses if 0 contains any unmarked characters. If 0 contains

no unmarked characters, CU unmarks all the characters of 0

and all the X's, and then proceeds to operation (3). If 0 contains

an unmarked character, CU marks two characters of 0 and exe-

cutes sub-operations (a), (b), and (c) in that order.

(a) CU repeats the horizontal advance a — 2 times. It accom-

plishes this by passing over the first two tallies of a and

then sending the sequences of Figure 45 into the construct-

ing arm for each of the remaining tallies of a.

(b) CU repeats the horizontal retreat with y-8 for a — 2 times.

It does this by marking two characters of a, and then exe-

cuting the following operation until all characters of a

are marked : mark an unmarked character of a and execute

the horizontal retreat with y-8 of Figure 47.

The horizontal retreat with y-8 requires the substitution

of pulse sequences for y and for 8 according to the states

\n and to be constructed in the cells at the terminus

of the constructing arm. To obtain these X's, CU must find

them on L and move the reading loop from a to them;

later CU must return the reading loop to a. In both cases,

CU can sense the place to stop by means of markers: each

time it uses a character of a or a X, CU will mark it. We are

assuming that the X's are placed on L from right to left in

order of use.

After CU has executed the horizontal retreat with 7-5

for a — 2 times, it removes the markers from a and proceeds

to sub-operation (c).

(c) CU repeats the vertical retreat with y-8 twice, using and

marking the next two X's on L.

At the end of operation (2), CU has completed the construction of

the secondary automaton and proceeds to start it.
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(3) CU injects the starting stimulus into the secondary automaton

by means of the sequences of Figure 49. Exit e of this figure is

an input to the cell located at (zi + |, yi + §), and so this

presupposes that the secondary automaton is designed to receive

its starting stimulus through the bottom of this cell.

The secondary automaton now begins to operate and CU proceeds

to withdraw the constructing arm back to itself.

(4) CU withdraws the constructing arm by sending sequences into

it for yi vertical retreats with 7-5 followed by X\ + 2 horizontal

retreats with 7-5. The required sequences are given in Figures

48 and 47, respectively. In every case both y and 5 are to be U,

which means that single pulses are to be used for each occurrence

of 7 and of 5. CU keeps count of these retreats by means of the

numbers yi and X\ on L.

This concludes the algorithm for constructing and starting a secondary

automaton. Note that at the end of the algorithm the universal

constructor CU + (MC + L) is again in its starting state.

Now that this algorithm is formulated, the design of the construct-

ing unit CU reduces to the problem of translating this algorithm

into a machine design. This can be done by using state organs SO
like Figure 43, interconnected by a coded channel, with the specific

interconnections between each state organ and the other state organs

reflecting the content of the algorithm. Control within CU is shifted

from one state organ SO to another under the influence of the infor-

mation on L according to the content of the algorithm. Note that

the memory control MC operates in a similar manner, with the con-

trol organs CO playing the role of state organs.

In Section 5.1.3, we noted the resemblance of the constructing

unit CU to a finite automaton FA, and the similarity of von Neu-

mann's universal constructor to Turing's universal computing ma-
chine. Let us look at these resemblances more closely.

A universal computing machine Mu has two parts: a tape unit

MC + L and a finite automaton FA which interacts with this tape

unit. Correspondingly, the universal constructor Mc has the two

parts MC + L and CU. The constructing unit CU performs two

interrelated functions: it interacts with MC + L and it constructs

the secondary automaton whose description is stored on L. The
processes involved in constructing a secondary automaton are not

novel: these processes are already employed in the tape unit MC +
L. More specifically, the reading loop is moved from one cell to

another cell on L by means of the same kind of construction and

destruction steps used in constructing a secondary automaton. Thus
the constructing arm of Figures 44-50 is very similar to the construct-
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ing arm of Figures 51-52, and either arm could be used in place of

the other.

This comparison shows that the constructing unit CU is really a

special kind of finite automaton, and that the same kinds of organs

and design principles used in the design of the memory control

MC (Ch. 4) and an arbitrary finite automaton FA (Sec. 5.1.3) can

be used to design CU. This comparison shows also that in the con-

text of von Neumann's cellular structure, the output of the universal

computing machine Mu is not as different from the output of the

universal constructor Mc as it might seem. The output of Mu is a

computation, while the output of Mc is a construction, but both are

accomplished by sending signals into constructing arms.

This concludes our discussion of the constructing unit CU. We
have shown that it can be embedded in von Neumann's 29-state

cellular structure, and we have stated the general principles of its

design.

The constructing unit CU together with the tape unit MC + L
constitutes a universal constructor. Hence there can be embedded in von

Neumann's 29-state cellular structure a universal constructor Mc with

this property: for each initially quiescent automaton M, there is a coded

description £>(M) of M such that, when £)(M) is placed on a tape L
attached to Mc ,

Mc will construct M.
This answers von Neumann's question about construction uni-

versality : can any single automaton construct every other automaton

(Sec. 1.1)? The only question remaining is his question about au-

tomata self-reproduction: can an automaton construct copies of

itself? We will present an affirmative answer to this question also,

after first summarizing von Neumann's accomplishments in the

present work.

5.3 Conclusion

5.3.1 Summary of the present work. Von Neumann began the pres-

ent Part II by asking five main questions, some of which contain

sub-questions (Sec. 1.1.2.1). The first main question concerns

(A) Logical universality:

(Al) When is a class of automata logically universal?

(A2) Is any single automaton logically universal?

A finite automaton with an indefinitely extendible tape is called a

Turing machine (see the end of the Second Lecture of Part I above).

Turing showed that the class of Turing machines is logically universal

in the sense that any logical process (computation) that is at all

performable by finite but arbitrarily extensive means can be per-
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formed by a Turing machine. Turing further showed that there is a

universal Turing machine, that is, a Turing machine which can

perform any given computation.

Thus, as von Neumann stated, Turing has answered these two

questions about logical universality. Von Neumann then posed

analogous questions about construction.

(B ) Constructibility:

(Bl) Can an automaton be constructed by another autom-

aton?

(B2) What class of automata can be constructed by a single

suitable automaton?

(C) Construction universality: Is any single automaton construction

universal?

(D ) Self-reproduction:

(Dl) Is there a self-reproducing automaton?

(D2) Is there an automaton which can both reproduce itself

and perform further tasks?

Von Neumann promised to answer all these questions affirmatively

by constructive means, that is, by designing various kinds of con-

structing and self-reproducing automata.

Questions (C) and (D) lead to his last main question.

(E) Evolution:

(El ) Can the construction of automata by automata progress

from simpler types to increasingly complicated types?

(E2) Assuming some suitable definition of efficiency, can this

evolution go from less efficient to more efficient au-

tomata?

Von Neumann made a few remarks relevant to evolution in Sections

1.7 and 1.8 but never returned to this topic.
10

After formulating the five main questions, von Neumann proceeded

to make questions (B)-(D) more precise. In effect, the rest of Chapter

1 and all of Chapter 2 are directed to this task. We will give a brief

summary of the development of these chapters.

Idealized neurons are adequate to handle the purely logical func-

tions of automata, but construction requires organs which can per-

form those non-logical functions which are required for the acquisition

and combination of the organs of which the constructed automata

are composed (Sec. 1.2). In his kinematic model, von Neumann
introduced girders, sensing elements, kinematic elements, joining

elements, and cutting elements to achieve these non-logical functions (—

10 See also our discussion of his "probabilistic model of self-reproduction

and evolution'* at the end of Sec. 1.1.2.3.
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(Fifth Lecture, Part I, and Sec. 1.1.2.3). In the present attempt, he

preferred to avoid the kinematieal aspects of self-reproduction so that

he could concentrate on the logical-combinatorial aspects of this

topic (Sec. 1.3.1.1). He was thus led to work with a space (frame-

work) in which the distinction between rest and motion is replaced by

a distinction between quiescent states and active states (Sees. 1.3.2

and 1.3.4.1).

Von Neumann then put various restrictions on the space (frame*

work) in which he would carry out his automata constructions. He
wanted it to have a high degree of regularity. He required functional

homogeneity, though not total homogeneity, because the latter is

incompatible with computation and construction (Sec. 1.3.3.2). He
^ further required isotropy, and selected a 2-dimensional space (Sec.

1.3.3.3). Because of the difficulties in modeling automata construction

in a continuous space, he decided to work with a discrete space (Sec.

1.3.3.4; cf. Sec. 1.1.2.3). In sum, he decided to carry out his automata

designs in a 2-dimensional, regular, cellular structure which is func-

tionally homogeneous and isotropic.

He then decided to model the growth of neurons (excitable cells)

by the transformation of existing, unexcitable cells into excitable

cells. Such a transformation cannot be induced by ordinary stimuli

(the ordinary active states of neurons) since these control the logical

functions. Hence, to accomplish construction in his cellular structure

von Neumann introduced special stimuli, which cause transitions

from the unexcitable state to different species of excitable states. Thus

growth is modeled by the transformation of unexcitable cells to ex-

citable cells by special stimuli (Sec. 1.3.4.2). This distinction between

ordinary and special stimuli, though modified later (Sees. 1.3.4.3,

2.5, and 2.6), is the basis for an answer to question (Bl), Can an

automaton be constructed by another automaton?

The next question is (B2), What class of automata can be con-

structed by a single suitable automaton? Von Neumann referred to

the constructing and constructed automata as the "primary" and

"secondary" automata, respectively. In Section 1.4 he planned the

general organization and mode of operation of a primary automaton

which can construct any member of some infinite class of secondary

automata. A description of the desired secondary automaton is to be

given to the primary automaton. The main problem concerns the

exact way this is to be done. Since there is no bound on the size of the

secondary to be constructed by a single primary, these descriptions

cannot be stored in the primary proper. Working with the universal

Turing machine in mind, von Neumann introduced an indefinitely
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extendible linear array L, on which the description of any secondary,

or series of secondaries can be stored.

Thus the primary (constructing) automaton will consist of a

finite part plus an indefinitely expandible linear array L. A construct-

ing automaton is analogous to a Turing machine, which consists of a

finite automaton plus an indefinitely expandible tape. Indeed, as von

Neumann noted, the linear array L could also serve as an indefinitely

expandible tape for a Turing machine if the finite automaton part of

a Turing machine could be embedded in the cellular structure (Sec.

1.4.2.3; cf. Sec. 5.1.3). The detailed problem of actually designing, for

the cellular structure, finite automata which can interact with the

linear array L and carry out constructions and computations on the

basis of the information obtained from L, is solved in Sections 3.1

through 5.2. Thus, by the end of Section 5.2, question (B) has been

answered affirmatively. Moreover, question (A), as applied to von

Neumann's cellular system, has also been answered affirmatively.

In the balance of Chapter 1, von Neumann reduced questions (C)

and (D) to question (B). He reduced question (C) to question (B)

by outlining a plan for converting the primary (constructing) autom-

aton into a universal constructor (Sec. 1.5). This plan is illustrated

in Figure 50 for constructions in the first quadrant. The secondary

automaton is a cells wide and 0 cells high, and its lower left-hand cell

is located at (xi
, yi). Let I be the number of states that each cell of

the secondary is to assume, and let X = 0, 1, • • •
, I — 1. The state

of cell (i, j) is specified by A;y , where i = 0, 1, • • •
, a — 1 and j =

0, 1, • • •
, j8 — 1. Hence the plan of any secondary automaton may be

given to the universal constructor by placing the sequence X\
, yi ,

ex,

iS, Aoo , • • •
, Aa-i,,3_i on the tape L. The universal constructor can

construct the secondary on the basis of the information contained in

this sequence. This reduces question (C) to question (B).

Von Neumann then reduced question (D) to question (C) by

showing how to make the universal constructor reproduce itself (Sees.

1.6, 1.7). In essence, he accomplished this by placing a description of

the universal constructor on its own tape L. He discussed two interre-

lated points in this connection.

First, there is an apparent difficulty in using L for self-reproduction.

A self-reproducing automaton must contain a complete description

of itself. This might seem a priori impossible, on the ground that the

constructing automaton must contain a complete plan of the con-

structed automaton, and in addition the ability to interpret and exe-

cute this plan (Sec. 1.6.1.1; cf. pp. 79-80 of Part I). The difficulty

is circumvented by designing the universal constructor so that it uses
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the information on L twice; once to construct a secondary, and once

to make a copy of L which is attached to the secondary (Sec. 1.6.1.2;

cf. pp. 84-87 of Part I and Sec. 5.3.2 below). In this way, a self-

reproducing automaton stores a complete description of itself in a

proper part of itself, namely, on the tape L (cf. Fig. 55). Likewise,

an automaton which is both a universal constructor and a universal

computer can store a complete description of itself in a proper part

of itself (Fig. 56)
n

The second point about using L in self-reproduction concerns some

alternatives. The universal constructor Mc constructs a secondary

automaton G whose description £)((?) is stored on L. Might a univer-

sal constructor be designed which could directly copy automaton G
itself (Sec. 1.6.2.3)? Alternatively, might an automaton be designed

which could explore an automaton G and construct its description

£)((?) (Sec. 1.6.3.1)? Von Neumann argued that these alternatives

would be difficult, if not impossible, to carry out. In exploring one

part of an active automaton (7, the exploring automaton might modify

an as yet unexplored part of G. More generally, the active G might

actively interfere with the exploratory activities of the exploring

automaton. This difficulty would be particularly acute in the case of

self-reproduction. If a universal constructor were to work directly

from the secondary G, when the universal constructor attempted

to reproduce itself it would be trying to explore itself. Von Neumann
thought such an attempt would probably lead to paradoxes of the

Richard type (Sec. 1.6.3.2). None of these difficulties arise when the

universal constructor works with the quiescent description £>((?)

(Sec. 1.4.2.1).

There is a parallel problem with respect to the construction of the

secondary automaton. If part of the secondary automaton were

active during construction, it could interfere with the construction

process. Von Neumann solved this problem by stipulating that the

initial state of the secondary automaton is to be composed entirely

of quiescent states (Sec. 1.7.2.1). In terms of the 29-state transition

function developed in Chapter 2, this means that the X*/ are limited

to the 10 values U, TMa0 (u = 0, 1; a = 0, 1, 2, 3), and C0o . After

the secondary automaton has been completed, it may be rendered

11 We have already noted the parallelism between Turing machines and
constructing machines. This parallelsm extends to the present point, for a

Turing machine can contain a description of itself. See C. Y. Lee, "A Turing
Machine Which Prints its Own Code Script" and James Thatcher's "The
Construction of a Self-Describing Machine."
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active by a starting stimulus injected into its periphery. We have

already called such automata "initially quiescent automata" (Sec.

5.1.2).

Thus the class of automata constructible by the universal con-

structing automaton is a proper subclass of the automata which can be

specified as part of an initial cell assignment (i.e., at time zero) of

von Neumann's cellular structure (Sec. 1.3.3.5). Actually, it is pos-

sible to design in the 29-state cellular structure constructing automata

which could construct every initially quiescent automaton and many
active automata as well. There is no need to do this, however, since

both the universal constructor and a universal Turing machine can

be designed as initially quiescent automata (Sees. 5.3.2, 5.1.3). More-

over, not all automata which can be specified as part of an initial cell

assignment of von Neumann's cellular structure can be constructed

from within the cellular structure. For example, the configuration of

Figure 13b (time zero) when surrounded by a wide band of unexcita-

ble cells U cannot be so constructed. A constructing arm can

construct the quiescent states Tioo and T020 , but after it activates

them it cannot withdraw from the surrounding area before Tioi and

T021 kill each other. A simple example of a non-constructible autom-

aton is the 3X3 configuration consisting of the sensitized state So

surrounded by cells in state C0o -

12

This concludes our summary of Chapter 1. To make specific his

questions about automata construction, von Neumann had to choose

a particular cellular structure. Chapter 2 is devoted to this task.

In Section 2.1.2 he selected a discrete temporal reference frame and

decided that the state of a cell at time t + 1 will depend only on its

own state and the states of its four immediate neighbors at time t.

In the remainder of the chapter he developed a set of 29 states and

their transition rule. We refer to the result as "von Neumann's

29-state cellular structure." It is summarized in Section 2.8 and

Figures 9 and 10.

12 Thatcher, "Universality in the von Neumann Cellular Model," Sec. 2.3.

Moore, "Machine Models of Self-Reproduction," called a configuration

which can exist only at time zero a "Garden-of-Eden" configuration. Every
Garden-of-Eden configuration is non-constructible, though not conversely.

Moore established a necessary condition for Garden-of-Eden configurations

to exist in a cellular structure in which information requires at least 1 unit of

time to pass from a cell to its neighbors. Myhill, "The Converse of Moore's
Garden of Eden Theorem," showed that this condition is also sufficient. This
condition is essentially that the cellular structure be non-backwards deter-

ministic in the sense of Burks and Wang, "The Logic of Automata," Sec. 3.3.
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We now reformulate questions (A)-(D) so they apply to von Neu-
mann's 29-state cellular structure, at the same time modifying them
somewhat.

(A) Logical universality: Can an initially quiescent automaton which

performs the computations of a universal Turing machine be

embedded in von Neumann's 29-state cellular structure?

(B) Constructibility: Can an automaton be constructed by another

automaton within von Neumann's 29-state cellular structure?

(C) Construction-universality: Can there be embedded in von Neu-
mann's 29-state cellular structure a universal constructor Mc

with this property: for each initially quiescent automaton M,
there is a coded description £>(M) of M such that, when £>(M)

is placed on a tape L attached to Mc ,
Mc will construct M?

(D) Self-reproduction:

(Dl) Can a self-reproducing automaton be embedded in von

Neumann's 29-state cellular structure?

(D2) Can there be embedded in von Neumann's 29-state

cellular structure an automaton which can perform the

computations of a universal Turing machine and can

also reproduce itself?

All these questions are answered affirmatively in the present work.

The answer to the constructibility question (B ) is given at the end of

Section 2.8.3 and in Figure 14. For each initially quiescent automaton

(2,, there are two binary (stimuli, no stimuli) sequences which, when
fed into inputs i and j of Figure 14, will construct the automaton

These two sequences can be produced by two linear arrays of Too*

cells, with the e's properly chosen. Hence, these two linear arrays,

together with the cells in columns A and B of Figure 14, will con-

struct &. This shows that for each initially quiescent automaton Q
there is an active automaton which will construct it.

Affirmative answers to the remaining questions are based on the

constructions of Chapters 3 and 4.

In Chapter 3 von Neumann designed the basic organs to be used.

Let i
1

• • • in be an arbitrary finite binary sequence, with "1" repre-

senting a stimulus and "0" representing the absence of a stimulus.

i
l

• • • in represents an indefinite repetition of the sequence i1 • •
« i

n
.

Von Neumann developed design algorithms for arbitrary pulsers

P(^i ... z
,n)

j
arbitrary periodic pulsers PP^' 1

• • • i
n

) y
and arbitrary

decoders D^' 1
%
n
). He designed two specific organs: the triple-

return counter <f> and the 1 vs. 10101 discriminator He concluded

Chapter 3 with an algorithm which will design an arbitrary coded

channel or wire crossing device.
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Chapter 4 is devoted to the design of the memory control MC.
MC reads and writes on the tape L under the direction of the con-

structing uni + CU. A block diagram of MC is given in Figure 37;

the operation of MC is outlined in Section 4.3.1. The basic operation

of reading cell xn of L, writing on xn , and changing the connection

to cell xn+\ (lengthening) or cell av-i (shortening) is carried out in

two stages. First, when a pulse comes from the output of CU labeled

"oi" to the input of MC having this same label, MC reads the cell

xn by means of the connecting loop Ci . If xn stores "zero," MC sends a

pulse to input ix of CU; while if xn stores "one," MC sends a pulse to

input i2 of CU. Second, CU sends a pulse to input o2 or o3 of MC
according as "zero" or "one" is to be written in cell xn ; CU also sends

a pulse to input o4 or o6 of MC according as the loops Ci and C2

are to be lengthened or shortened. MC executes these operations, and

when they are finished it sends a pulse to input is of CU signifying

completion.

The parts of the memory control MC are: the read-write-erase unit

RWE; the read-write-erase control RWEC; the delay area W; the

transfer area Y; and the coded channel, consisting of the main chan-

nel together with X, Z, CCi ,
CC2 , and CC3 .

Von Neumann did not quite complete the design of MC, and what

he did finish contained many errors. We have corrected all but one

error as we have gone along (Ch. 4 and Sec. 5.1.1). This last error is

corrected and the design of MC is completed in Section 5.1.2. A
much improved design of MC is suggested in Section 5.2.2.

The memory control MC, the indefinite linear array L, the con-

necting loop Ci , and the timing loop C2 together constitute a tape

unit with unlimited memory capacity. Moreover, MC is an initially

quiescent automaton which is started by a stimulus impinging on its

periphery (input Oi). Hence an initially quiescent automaton which

performs the functions of a tape unit with unlimited memory capacity

can be embedded in von Neumann's 29-state cellular structure.

A Turing machine consists of such a tape unit together with a

finite automaton which can interact with this tape unit. In Section

5.1.3 we showed how to simulate an arbitrary finite automaton by an

initially quiescent cellular automaton. Combining these results and

applying them to the specific case of a universal Turing machine, we
obtained a positive answer to von Neumann's question (A): An
initially quiescent automaton which performs the computation of a

universal Turing machine can be embedded in von Neumann's

29-state cellular structure.

Von Neumann's universal constructor Mc consists of the construct-
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ing unit CU combined with the tape unit (MC + L). See Figure 50.

The constructing arm is designed in Section 5.2.1, and the design of

the constructing unit CU is sketched in Section 5.2.3. Hence there can

be embedded in von Neumann's 29-state cellular structure a universal

constructor Mc with this property: for each initially quiescent autom-

aton M, there is a coded description 3D(M) of M such that, when
is placed on a tape L attached to Mc ,

Mc will construct M.
This answers von Neumann's question (C) and brings us to ques-

tion (D), concerning self-reproduction.

A comparison of the universal computer Mu and the universal

constructor Mc shows that in von Neumann's cellular structure, com-

putation and construction are similar activities. Both Mc and Mu

are finite data processors which can interact with an indefinitely ex-

tendible tape. Suppose the universal computer Mu is designed to

write its output answer on a fresh tape L. Then both Mu and Mc

produce initially quiescent automata. The universal constructor Mc

produces rectangular initially quiescent automata based on the 10

states U, Tuao (u = 0, 1; a = 0, 1, 2, 3), and Coo • The universal com-

puter Mu produces a linear initially quiescent automaton based on

the two states U and T03o ( I )•

5.3,2 Self-reproducing automata. Our task is now to convert the uni-

versal constructor Mc of Section 5.2.3 and Figure 50 into a self-repro-

ducing automaton.

Note first that the universal constructor Mc is in fact an initially

quiescent automaton. Consequently, a description £>(MC ) can be

placed on the tape L attached to Mc . When this is done and Mc is

started, the complex Mc + £)(MC ) will produce a copy of Mc as

the secondary constructed automaton. This is not yet self-reproduc-

tion, however, for the constructed automaton Mc is smaller than the

constructing automaton Mc + 3D(MC ).

In this case the constructing automaton is larger and, in a sense,

more complex than the constructed automaton because the construct-

ing automaton contains a complete plan £>(MC ) of the constructed

automaton and, in addition, a unit Mc which interprets and executes

this plan (Sec. 1.6.1.1, pp. 79-80 of Part I). To obtain a primary

automaton which will construct a secondary as large as itself, we
make some modifications in the universal constructor Mc (compare

Sec. 1.6.1.2 and pp. 84-86 of Part I).

Let the secondary automaton to be constructed consist of an

initially quiescent automaton M together with a tape L which stores

some tape content 3(M) initially. See Figure 54. Place the following

information on the tape L of the universal constructor: a period, the
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description 3>(Af), a second period, the tape content 3(M), and a

third period. As a special case we allow 3(M) and the third period

to be omitted. It is easy for the universal constructor to detect that

3(M) is omitted since 3(Af) is written in a five-bit code that does not

include the all-zero character (Sec. 5.2.3).

Now change Mc into a modified universal constructor M* which

executes the following three steps. First, M* uses £>(M) to construct

M, as before (Sees. 5.2.1 and 5.2.3). Second, M* produces a tape L

attached to M which stores a period, 3(M), and a second period. If

Mc
* finds that there is nothing stored on its tape beyond the second

period (i.e., 3(Af) is missing), M* will then copy a period, 3)(M),

and a second period onto the tape attached to M. Third, Mc
* will

give a starting stimulus to M.

The second of these steps is a simple tape-copying operation. It can

be carried out by the constructing unit CU and the constructing arm

in a way analogous to the way these organs construct M. The coding

is different in the two cases, of course. A cell (i, j) of M is described

in 3D (M) by a five-bit character which is stored in five successive cells

of the tape of Mc
*. In contrast, each cell of M's tape is the same as the

corresponding cell of Mc *'s tape.

For each choice of location (x x , y x ) of a copy of M* there is a

description £>(MC
*). Place this description £>(MC

*) on the tape of

Mc
* itself. The complexMc

* + 3D (Mc
*
) will constructMc

* + £> (Afc
* )

.

This is self-reproduction. See Figure 55.

Hence, a self-reproducing automaton can be embedded in von Neu-

mann's 29-state cellular structure. This answers question (Dl).

Iterated construction and self-reproduction may be achieved by

further modification of the universal constructor (Sec. 1.7).

The initially quiescent automatonMu is a universal Turing machine

(Sec. 5.1.3). Place the description S>(MU + Mc
*) on the tape L of

Mc
*

. The primary automaton Me
* + D(M tt + Me

*) will then

construct as secondary the automaton {Mu + Mc
*) + £>(Mu +

Mc
*). In this case the constructed automaton is larger, and in a

sense more complicated, than the constructing automaton.

Next, attach Mu to M* as in Figure 56. Place the description

£>(MW + Mc
*) on the tape of Mu + Mc

*. The automaton (Mu +
M*) + <£>{MU + Mc

*) will construct (Mu + Mc
*) + 3D(MW +

Mc ), and hence is self-reproductive. After it is completed, the second-

ly (Mu + Mc
*) + 3D(MW + Mc

*) can carry out a computation.

Alternatively, if Mu is supplied with its own tape, each (Mu +
Mc

*) + £>(MU + Mc
*) can compute and construct simultaneously.

Hence, there can be embedded in von Neumann's 29-state cellular
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structure an automaton which can perform the computations of a univer-

sal Turing machine and can also reproduce itself. This answers question

(D2).

All of von Neumann's questions about automata construction and

computation (Sees. 1.1.2.1 and 5.3.1) have now been answered

affirmatively. His 29-state cellular structure is computation-universal,

construction-universal, and self-reproductive. In this cellular struc-

ture, self-reproduction is a special case of construction, and con-

struction and computation are similar activities.]
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Fig. 1. Neural network in which dominance is not transitive
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Fig. 27. A coded channel
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Fig. 28. Part two
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Fig. 28. Part three



340 THEORY OF SELF-REPRODUCING AUTOMATA

Fig. 29. Pulsers and decoders of a coded channel
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Inputs to and Outputs from CU
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Fig. 37. Tape unit with unlimited memory capacity.

Note: the various organs and units are not drawn to scale.
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Fig. 38. The logical structure of the procedure
followed by the memory control MC.
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Fig. 39. Read-write-erase unit RWE. (b) Lower part of RWE. Note:

parts (a) and (b) of Figure 39 constitute one continuous drawing.
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To triple-return counter
input {$-0 or $ -0) of

RWE 2

From triple-return counter
output ifyb or^-^ofRWE
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To Uj • o+ or Vj • <7+ if *
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t
-a_ if <f>
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to either start next CO or send pulse to/j

Fig. 40. Control organ CO



Inputs to and Outputs from. CU
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2

RWEC CC
3

V\£. 11. Read-write-erase control RWEC. (a) Control organs for lengthen-

ing C2 (COiandC02) and for lengthening the lower part of Ci (CQ 3 and CO4).
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Fig. 41. Read-write-erase control RWEC. (b) PP(1) to store the fact that
a "zero" is to be written in xn , and control organs for writing a zero and
lengthening the upper part of Ci . (This figure is continued from p. 358.)



Fig. 41. Read-write-erase control RWEC. (c) PP(1) to store the fact that a

"one" is to be written in x n , and control organs for leaving a one in cell xn and

lengthening the upper part of Ci . (This figure is continued from p. 359.)
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RWEC CC
3

To input

a of CO,:

Fig. 41. Read-write-erase control RWEC. (d) Control organs for shortening

C 2 • (This figure is continued from p. 360.)



Fig. 41. Read-write-erase control RWEC. (e) Control organs and PP(1)
for shortening the lower part of Ci and writing in cell xn . (This figure is con-

tinued from p. 361.)
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D E
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Fig. 45. Horizontal advance of constructing arm
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Fig. 46. Vertical advance of constructing arm
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Fig. 47. Horizontal retreat of constructing arm with construction of y and 5
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(a) Start with

A B c D E

v\ c -> -> -> ->

u\ c => => =>

X X X X X X
VN 0 1 2 n-1 n n+1

w\ <- <-

1

2

L 3

4

in which the reading loop passes through cell Xn .

(b) The sequence 10101 into V produces:

(1) lot W if Xn is U (representing "zero")

(2) 1 0 1 0 1 at W if Xn is ( representing "one")

(3) and leaves cell Xn in state i:

A B C D E

V\

u\

w

c -> -> -> -> ->

c => => => =>

A'
i

A- A-
/? -l

<- <r <- <- <- <-

J

4

Fig. 51. New method of operating the linear array L
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Fig. 52. Writing "one" in cell x n and lengthening the reading loop













SYMBOL INDEX
Note: page references are to the text locations where symbols are denned 01

formally introduced for the first time.

A (a, £) (CU transition function), 206

C €t f (confluent state), 148

Ci (connecting loop), 208

C2 (timing loop), 213

CCi , CC 2 , CC3 (coded channel of MC), 227

CO (control organ), 244

CU (constructing unit) , 205

D (delay area of CO), 245

D^'1
• • • i

n
) (decoding organ), 176

3D(M), SD'(M) (description of a Turing machine) 270-271

E{a) (CU output function), 206

FA (finite automaton), 267

(cell vector), 133

ii , ii , H (inputs to CU, outputs of MC), 232

i
1

• • i
n (rigidly timed sequence), 157

%i . . .
{n (periodic repetition), 158

L (linear array), 202

Mc (universal constructor), 271

M c* (modified universal constructor), 295

Mu (universal computing machine), 270

MC (memory control), 205

(state of cell # at time t), 133

ns (subsequent location to read value of £n ), 204

01,02,03, 04 , o 5 (outputs of CU, inputs to MC), 232-233

P ffl
• • i

n
) (pulser), 159

PP^ 1
- • i

n
) (periodic pulser), 163

R^ 1
• • • i

n
) (recognizer), 189

RWE (read-write-erase unit), 226

RWEC (read-write-erase control unit), 226

Ss (set of direct-process states), 145

SO« (state organ), 267

Tuae (transmission state), 148

U (unexcitable state), 140

W (delay area of MC), 227

Wi , W2 , W3 , W4 (sub-areas of W), 256

X (area X of MC), 227

Xi
f yi (secondary automaton coordinates) . 116

xn (cell of L under scan), 203

X(a) (CU output function), 206

Y (transfer area of MC), 227

Z (area Z of MC), 227

Zi , Z 2 ,
Z3 ,

Z4 (sub-areas of Z), 256

379
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a (length of secondary automaton), 116

/3 (width of secondary automaton), 116

e
s (lengthen-shorten parameter for G ,

C 2), 204

\ij (state of cell 117

£n
s (value of the n th

cell of L), 204
<£ (triple-return counter), 181

• (1 vs. 10101 discriminator), 187

ft (responding organ of $), 181

[0] (ordinary stimuli), 148

[1] (special stimuli), 148

Z, to, 10 (ordinary transmission states), 152

J>, ti, <L, |i (special transmission states), 152

• ("and"), 100

- ("not"), 100

+ ("or"), 100

^ , *
, J, (ordinary transmission states), 262

ft
j ^> U (special transmission states), 262

• t ,
• ft , etc. (ordinary or special transmission states initially active), 262
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