Unimodalité des petits posets

N. Lygeros et Hazim-Sharif

Abstract: All the posets on at most 11 elements share the unimodality property when they are ordered according to the relation, height and width parameters.

On note respectivement P_n^r , P_n^h , P_n^l nombre de posets à n sommets ayant r relations, h pour hauteur, l pour largeur. La notion de hauteur (voir [1]) d'un poset p est définie comme le maximum sur toutes les chaînes dans p du nombre de points de la chaîne, et la notion de largeur (voir [1]) d'un poset p est définie comme le maximum sur toutes les antichaines dans p du nombre de points de l'antichaine. Toutes les conjectures dans notre précédent article [2] sont vérifiées par les posets à 11 éléments qui ont été obtenus par J. Culberson et G. J. Rawlins [3]. Ils ont en particulier confirmé la conjecture de Fraïssé :

Conjecture F : Pour n fixé, la suite P_n^r est unimodale.

Le premier auteur travaillant sur l'extensibilité des posets via la hauteur eut alors l'idée de transposer la conjecture F sur cette dernière notion et calcula sa validité sur tous les posets à au plus 7 élément ce qui l'amena à poser :

Conjecture $H: Pour \ n \ fixé, \ la \ suite \ P_n^h \ est \ unimodale.$

Qui est vraie jusqu'à n = 11 comme le montre le tableau suivant obtenu par notre programme - pour des algorithmes de dénombrement des posets voir [3].

$$P_n^{n+1-h}$$
, $n \in [1,11]$, $h \in [1,n]$

1.	1	2	3	4	5	6	7	8	9	10	11
1	1					111111	province a				
2	1	1									
3	1	3	1								
4	1	6	8	1							
5	1	10	31	- 20	1						
6	1	15	84	162	55	1					
7	1	21	185	734	.940	163	1				
8	1	28	356	2380	7305	6372	556	1			
9	1	36	623	6259	35070	_86683	52336	2222	1		
10	1	45		14258	125597	619489	1261371	534741	10765		
11	1	55	1569	29241	370057	3012577	13452868	22902794	6915309	64955	1

À l'aide d'un raisonnement et de méthodes analogues on a :

Conjecture L : Pour n fixé, la suite P_n^l est unimodale.

et le tableau des valeurs pour $n \le 11$:

11	1	2	3	4	5	6	7	8	9	10	11
1	1										
2	1	1									
2 3 4 5 6 7 8 9	1	3	1								
4	1	5	9	1							
5	1	7	29	25	1						
6	1	9	63	170	74	1					
7	1	11	112	636	1060	224	1				
8	1	13	179	1727	7289	7079	710	1			
9	1	15	265	3920	32623	93299	50797	2310	1		
10	1	17	373	7900	113379	727712	1320680	389497	7724	1	
11	1	19	504	14644	335328	4107528	18630499	20465722	3168869	26312	1

Remarques:

Nous pensons que ce serait une erreur de considérer ces conjectures comme évidentes ou au moins naturelles. En effet M. Pouzet et I. Rosenberg [4] avaient conjecturé que le profil de certaines relations était unimodal et cela paraissait naturel, néanmoins D. Stanton [5] en utilisant un ordinateur a trouvé un contre-exemple à 24 éléments dans le domaine des partitions!

La similarité des définitions des notions de hauteur et largeur d'un poset est sans doute la cause du fait que lorsque le nombre de posets prend ses valeurs maximales pour n fixé alors hauteur = largeur et ces valeurs sont du même ordre de grandeur.

Nous remercions C. Chaunier pour ses conseils informatiques ainsi que M. Pouzet pour l'indispensable matériel informatique qu'il a su nous procurer.

Hazim-Sharif et N. Lygeros

Références

- [1] Peter C. Fishburn: Thicknesses of ordered sets. SIAM J. Disc. Math. vol. 3 n°4, p. 489_501, 1990.
- [2] R. Fraïssé et N. Lygeros : Petits posets : dénombrement, représentabi lité par cercles et « compenseurs ». CRAS, 1991.
- [3] J. Culberson et G. Rawlins: New results from an algorithm for counting posets. Order 7. 1991, p. 361-374.
- [4] M. Pouzet et I. Rosenberg: Sperner properties for groups and relations. Europ. J. Combinatorics 7, 1986, p. 349-370.
- [5] D. Stanton: Unimodality and Young's lattice. J. Comb. Theory series A vol. 54 n°1, 1990, p. 41-53.