R. Bayon, N. Lygeros

Definitions

- Definition : A hypergroupoid H=<H,*> is a non-empty set H equipped with a hyperoperation *. (i.e. a mapping whose domain is HxH and whose range is p(H))
- Definition : A hypergroupoid is called a hypergroup if the hyperoperation satisfies the following axioms :
 (x*y)*z = x*(y*z) for all x,y,z in H (associativity)
 x*H = H*x = H for all x in H (reproduction)
- Definition : Let G=<G,.> be a group and P a non-empty subset of G, a P-hypergroup is the hypergroup G_P=<G,*_P> equipped with the following hyperoperation

Definitions

Definition : A hypergroup H=<H,*> is called cyclic with finite period with respect an element h of H if there exists an integer v such that H=h¹ U h² UU h^v.

Definition : A hypergroupoid is called a hyperstructure if the hyperoperation satisfies the following axioms :

 $\Box (x^* y)^* z \cap x^* (y^* z) \neq \phi \text{ for all x,y,z in H (weak associativity)}$ $\Box x^* H = H^* x = H \text{ for all x in H (reproduction)}$

Posets, Groups and Hypergroups

Theorem (2004)

A poset Po can be associated to every P-hypergroup.

Theorem (2004)

A poset Po of cardinality a^2+a can be associated to every $\langle G, P^* \rangle$ P-hypergroup with G of cardinality **a**.

Posets, Groups and Hypergroups

Theorem (2004)

Let **a** a prime number, $\langle G, P^* \rangle$ P-hypergroup and G a group of cardinality **a**=2 or 3,5,7 or 11 and more then there is an associated poset Po of cardinality respectively **a** or **3a** or **2a** which has an automorphism group of order **a**.

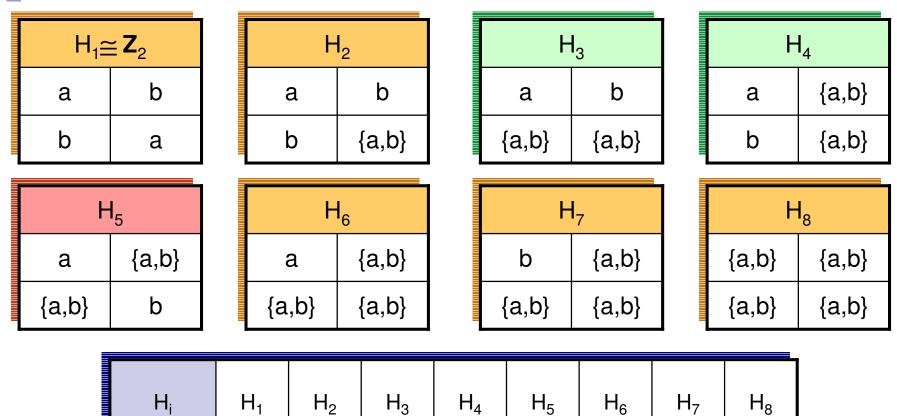
Theorem (2004)

Let $\langle G, P^* \rangle$ P-hypergroup and G a finite group of cardinal **a**, non direct product of two groups, generated by elements which are two by two of distinct order then there exists a poset which automorphisms group is isomorphic to G and with cardinal is equal to **3a**.

- 81 possible configurations
- 35 candidates verifying axiom of reproduction
- 30 candidates verifying associativity
- 14 hypergroups

Theorem (Vougiouklis 1980)

There are 8 non isomorphic hypergroups of order 2.



H _i	H ₁	H_2	H ₃	H ₄	H_5	H_6	H ₇	H ₈
Aut(H _i)	2	2	2	2	1	2	2	1

The hypergroups of order 3

- 40353607 possible configurations
- 10323979 candidates verifying axiom of reproduction
- 28111 candidates verifying associativity
- 23192 hypergroups

Theorem (2004)

There are 3999 non isomorphic hypergroups of order 3.

Classification

CYCLIC & ABELIAN	CYCLIC & NON ABELIAN				
437	3439				
NON CYCLIC & ABELIAN	NON CYCLIC & NON ABELIAN				
PROJECTIVE NON PROJECTIVE 7 22	PROJECTIVE NON PROJECTIVE 29 65				

Automorphism groups

Order of automorphism group	1	2	3	6
Number of hypergroups	6	10	244	3739

Rigid Hypergroups

Proposition There are only 2 rigid hypergoups of order 2.

Theorem

There are only 6 rigid hypergoups of order 3.

The hypergroups of order 3

Rigid hypergroups

• 6 rigid hypergroups of order 3

а	{a,b}	{a,c}	а	{a,b,c}	{a,b,c}	{b,c}	{a,b}	{a,c}
{a,b}	b	{b,c}	{a,b,c}	b	{a,b,c}	{a,b}	{a,c}	{b,c}
{a,c}	{b,c}	С	{a,b,c}	{a,b,c}	С	{a,c}	{b,c}	{a,b}

{b,c}	{a,b,c}	{a,b,c}	{a,b,c}	{a,b}	{a,c}	{a,b,c}	{a,b,c}	{a,b,c}
{a,b,c}	{a,c}	{a,b,c}	{a,b}	{a,b,c}	{b,c}	{a,b,c}	{a,b,c}	{a,b,c}
{a,b,c}	{a,b,c}	{a,b}	{a,c}	{b,c}	{a,b,c}	{a,b,c}	{a,b,c}	{a,b,c}

Hypergroups with scalar unit

- 40353607 possible configurations
- 10323979 candidates verifying axiom of reproduction
- 28111 candidates verifying associativity
- 198 hypergroups with scalar unit

Theorem (2004)

There are 37 non isomorphic hypergroups of order 3 with scalar unit.

- 81 possible configurations
- 65 candidates verifying weak associativity
- 35 candidates verifying axiom of reproduction
- 35 hyperstructures

Proposition

If <H,*> is a hypergroupoid of order 2 verifying axiom of reproduction then <H,*> is a hyperstructure.

Theorem (2004)

There are 20 non isomorphic hyperstructures of order 2.

(a*a,a*b,b*a,b*b)

(a, b, b, a)	(b, a, {a,b}, {a,b})		
(a, b, b, {a,b})	(b, {a,b}, a, {a,b})		
(a, b, {a,b}, a)	(b, {a,b}, {a,b}, a)		
(a, b, {a,b}, {a,b})	(b, {a,b}, {a,b}, {a,b})		
(a, {a,b}, b, a)	({a,b}, a, a, {a,b})		
(a, {a,b}, b, {a,b})	({a,b}, a, b, {a,b})		
(a, {a,b}, {a,b}, a)	({a,b}, a, {a,b}, {a,b})		
(a, {a,b}, {a,b}, b)	({a,b}, b, a, {a,b})		
(a, {a,b}, {a,b}, {a,b})	({a,b}, b, {a,b}, {a,b})		
(b, a, a, {a,b})	({a,b}, {a,b}, {a,b}, {a,b})		

The hypergroups of order 3

Rigid hyperstructures

_			_			_		
	H	H' ₁₃		H	16		H	18
	b	{a,b}		{a,b}	а		{a,b}	b
	{a,b}	а		b	{a,b}		а	{a,b}
	F	H ₅		F	8			
	а	{a,b}		{a,b}	{a,b}			
	{a,b}	b		{a,b}	{a,b}			

Classification

CYCLIC & NON ABELIAN
10

The hypergroups of order 3

Hyperstructures of order 3 with scalar unit

- 40353607 possible configurations
- 15322445 candidates verifying weak associativity
- 10323979 candidates verifying axiom of reproduction
- 1677 hyperstructures

Theorem (2004)

There are 292 non isomorphic hyperstructures of order 3 with scalar unit.

Hyperstructures of order 3 with scalar unit

Classification

CYCLIC	& ABELIAN	CYCLIC & NON ABELIAN			
	74	205			
NON CYCL	IC & ABELIAN		& NON ABELIAN		
PROJECTIVE 1	NON PROJECTIVE 8	PROJECTIVE 0	NON PROJECTIVE 4		

Divisibility

Theorem (2004)

If H is a hyperstructure with a scalar unit then \mathbf{Z}_n is a subgroup of Aut(H).

References

- Birkhoff G., 1946. Sobre los grupos de automorphimos. Revista Union Math. Arg., 11. pp.155-157.
- Chaunier C. and N. Lygeros 1994. Posets minimaux ayant un groupe d'automorphismes d'ordre premier. C.R.Acad.Sci. Paris, t.318, Série I, p. 695-698.
- De Salvo M. and Freni D. 1981. Semi-ipergruppi ciclici. Atti Sem. Mat. Fis. Un. Modena, 30, pp.44-59.
- Lygeros N. and Mizony M.1996. Construction de posets dont le groupe d'automorphismes est isomorphe à un groupe donné.
 C.R.Acad.Sci. Paris, t.322, Série I, pp. 203-206.
- Lygeros N. 2004. Posets, Groups and Hypergroups. Perfection vol.5 8.
- Lygeros N. 2004. *Sur les hypergroupes rigides.* Perfection vol.5 9.

References

- Marty F. 1934. Sur une généralisation de la notion de groupe. 8th Congress Math. Scandinaves, Stockholm, pp.45-49.
- Mittas J. 1984 Hypergroups renaissants. Atti. Sem. Mat. Fis. Un. Modena, 33,319-328.
- Vougiouklis Th. 1990. Isomorphisms on P-hypergroups and cyclicity. Ars Combinatoria 29A, pp.241-245.
- Vougiouklis Th. 1981. Cyclicity in a special class of hypergroups. Acta Un. Car.-Math. Ph., 22, N.1, 3-6.
- Vougiouklis Th. 1980. *Hypergroups cyclicity* ;.Thesis 1980.
- Vougiouklis Th., Spartalis S., Kessoglides M. 1997: Weak Hyperstructures on small sets. Ratio Mathematica 12, 90-96.