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The hypergroups of order 3

Definitions

� Definition : A hypergroupoid H=<H,*> is a non-empty set H
equipped with a hyperoperation *. (i.e. a mapping whose
domain is HxH and whose range is p(H) )

� Definition : A hypergroupoid is called a hypergroup if the
hyperoperation satisfies the following axioms :
�                                   for all x,y,z in H (associativity)

�                            for all x in H (reproduction)

� Definition : Let G=<G,.> be a group and P a non-empty
subset of G, a P-hypergroup is the hypergroup GP=<G,*P>
equipped with the following hyperoperation

*P: (x,y)        x.P.y

)*(**)*( zyxzyx =

HxHHx == **



The hypergroups of order 3

Definitions

� Definition : A hypergroup H=<H,*> is called cyclic with finite period
with respect an element h of H if there exists an integer v such that
H=h1 U h2 U ….U hv.

� Definition : A hypergroupoid is called a hyperstructure if the
hyperoperation satisfies the following axioms :
�                                             for all x,y,z in H (weak associativity)

�                           for all x in H (reproduction)

φ≠∩ )*(**)*( zyxzyx

HxHHx == **
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Posets, Groups and Hypergroups

Theorem (2004)

A poset Po can be associated to every P-hypergroup.
Theorem (2004)

A poset Po can be associated to every P-hypergroup.

Theorem (2004)

A poset Po  of cardinality a2+a can be associated to every
<G,P*> P-hypergroup with G of cardinality a.

Theorem (2004)

A poset Po  of cardinality a2+a can be associated to every
<G,P*> P-hypergroup with G of cardinality a.
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Posets, Groups and Hypergroups

Theorem (2004)

Let a a prime number, <G,P*> P-hypergroup and G a group of
cardinality a=2 or 3,5,7 or 11 and more then there is an
associated poset Po  of cardinality respectively a or 3a or 2a

which has an automorphism group of order a.

Theorem (2004)

Let a a prime number, <G,P*> P-hypergroup and G a group of
cardinality a=2 or 3,5,7 or 11 and more then there is an
associated poset Po  of cardinality respectively a or 3a or 2a

which has an automorphism group of order a.

Theorem (2004)

Let <G,P*> P-hypergroup and G a finite group of cardinal a, non
direct product of two groups, generated by elements which are
two by two of distinct order then there exists a poset which
automorphisms group is isomorphic to G and with cardinal is
equal to 3a.

Theorem (2004)

Let <G,P*> P-hypergroup and G a finite group of cardinal a, non
direct product of two groups, generated by elements which are
two by two of distinct order then there exists a poset which
automorphisms group is isomorphic to G and with cardinal is
equal to 3a.
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The Hypergroups of order 2

� 81 possible configurations

� 35 candidates verifying axiom of reproduction

� 30 candidates verifying associativity

� 14 hypergroups

Theorem (Vougiouklis 1980)

There are 8 non isomorphic hypergroups of order 2.
Theorem (Vougiouklis 1980)

There are 8 non isomorphic hypergroups of order 2.
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The Hypergroups of order 2
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The Hypergroups of order 3

� 40353607 possible configurations

� 10323979 candidates verifying axiom of reproduction

� 28111 candidates verifying associativity

� 23192 hypergroups

Theorem (2004)

There are 3999 non isomorphic hypergroups of order 3.
Theorem (2004)

There are 3999 non isomorphic hypergroups of order 3.
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Classification

NON PROJECTIVE

65

NON PROJECTIVE

22

PROJECTIVE

29

PROJECTIVE

7

NON CYCLIC & NON ABELIANNON CYCLIC & ABELIAN

CYCLIC & NON ABELIAN

3439

CYCLIC & ABELIAN

437
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Automorphism groups

3739244106Number of hypergroups

6321Order of automorphism group
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Rigid Hypergroups

Proposition

There are only 2 rigid hypergoups of order 2.
Proposition

There are only 2 rigid hypergoups of order 2.

Theorem

There are only 6 rigid hypergoups of order 3.
Theorem

There are only 6 rigid hypergoups of order 3.
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Rigid hypergroups

c{b,c}{a,c}

{b,c}b{a,b}

{a,c}{a,b}a

{a,b}{b,c}{a,c}

{b,c}{a,c}{a,b}

{a,c}{a,b}{b,c}

c{a,b,c}{a,b,c}

{a,b,c}b{a,b,c}

{a,b,c}{a,b,c}a

� 6 rigid hypergroups of order 3

{a,b}{a,b,c}{a,b,c}

{a,b,c}{a,c}{a,b,c}

{a,b,c}{a,b,c}{b,c}

{a,b,c}{b,c}{a,c}

{b,c}{a,b,c}{a,b}

{a,c}{a,b}{a,b,c}

{a,b,c}{a,b,c}{a,b,c}

{a,b,c}{a,b,c}{a,b,c}

{a,b,c}{a,b,c}{a,b,c}
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Hypergroups with scalar unit

Theorem (2004)

There are 37 non isomorphic hypergroups of order 3
with scalar unit.

Theorem (2004)

There are 37 non isomorphic hypergroups of order 3
with scalar unit.

� 40353607 possible configurations

� 10323979 candidates verifying axiom of reproduction

� 28111 candidates verifying associativity

� 198 hypergroups with scalar unit
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Hyperstructures of order 2

� 81 possible configurations

� 65 candidates verifying weak associativity

� 35 candidates verifying axiom of reproduction

� 35 hyperstructures

Theorem (2004)

There are 20 non isomorphic hyperstructures of order 2.
Theorem (2004)

There are 20 non isomorphic hyperstructures of order 2.

Proposition

If <H,*> is a hypergroupoid of order 2 verifying axiom of
reproduction then <H,*> is a hyperstructure.

Proposition

If <H,*> is a hypergroupoid of order 2 verifying axiom of
reproduction then <H,*> is a hyperstructure.
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Hyperstructures of order 2

({a,b}, {a,b}, {a,b}, {a,b})(b,  a,  a, {a,b})

({a,b}, b, {a,b}, {a,b})(a, {a,b}, {a,b}, {a,b})

({a,b}, b,  a, {a,b})(a, {a,b}, {a,b}, b)

({a,b}, a, {a,b}, {a,b})(a, {a,b}, {a,b}, a)

({a,b}, a,  b, {a,b})(a, {a,b}, b, {a,b})

({a,b}, a,  a, {a,b})(a, {a,b}, b,  a)

(b, {a,b}, {a,b}, {a,b})(a,  b, {a,b}, {a,b})

(b, {a,b}, {a,b}, a)(a,  b, {a,b}, a)

(b, {a,b}, a, {a,b})(a,  b,  b, {a,b})

(b,  a, {a,b}, {a,b})(a,  b,  b,  a)

�  (a*a,a*b,b*a,b*b)
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Hyperstructures of order 2

� Rigid hyperstructures

{a,b}b

a{a,b}

H’16

{a,b}a

b{a,b}
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a{a,b}
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{a,b}{a,b}

H8

b{a,b}
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H5
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Hyperstructures of order 2

 PROJECTIVE & ABELIAN

1

CYCLIC & NON ABELIAN

10

CYCLIC & ABELIAN

9

� Classification
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Hyperstructures of order 3 with scalar unit

� 40353607 possible configurations

� 15322445  candidates verifying weak associativity

� 10323979 candidates verifying axiom of reproduction

� 1677  hyperstructures

Theorem (2004)

There are 292  non isomorphic hyperstructures of order 3 with
scalar unit.

Theorem (2004)

There are 292  non isomorphic hyperstructures of order 3 with
scalar unit.
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Hyperstructures of order 3 with scalar unit

� Classification

NON PROJECTIVE

4

NON PROJECTIVE

8

PROJECTIVE

0

PROJECTIVE

1

NON CYCLIC & NON ABELIANNON CYCLIC & ABELIAN

CYCLIC & NON ABELIAN

205

CYCLIC & ABELIAN

74
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Divisibility

Theorem (2004)

If H is a hyperstructure with a scalar unit then Zn is a subgroup of
Aut(H).

Theorem (2004)

If H is a hyperstructure with a scalar unit then Zn is a subgroup of
Aut(H).
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