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Abstract We study the odd prime values of the Ramanujan tau function, which form
a thin set of large primes. To this end, we define LR(p,n) := τ(pn−1) and we show
that the odd prime values are of the form LR(p, q) where p,q are odd primes. Then
we exhibit arithmetical properties and congruences of the LR numbers using more
general results on Lucas sequences. Finally, we propose estimations and discuss nu-
merical results on pairs (p, q) for which LR(p, q) is prime.
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1 Introduction

The tau function is defined as the Fourier coefficients of the modular discriminant

Δ(z) = q

+∞∏

n=1

(
1 − qn

)24 =
+∞∑

n=1

τ(n)qn,

where z lies in the complex upper half-plane and q = e2πiz.
Nearly a century ago, the Indian mathematician Srinivasa Ramanujan showed

great interest in the tau function and discovered some of its remarkable properties.
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Below are listed the known identities and congruences for the tau function:

τ(nm) = τ(n)τ(m) for n,m coprime integers; (1)

τ
(
pr+1) = τ(p)τ

(
pr

) − p11τ
(
pr−1) for p prime and r an integer ≥ 1; (2)

τ(n) ≡ σ11(n)
(
mod 211) for n ≡ 1 (mod 8); (3)

τ(n) ≡ 1217σ11(n)
(
mod 213) for n ≡ 3 (mod 8); (4)

τ(n) ≡ 1537σ11(n)
(
mod 212) for n ≡ 5 (mod 8); (5)

τ(n) ≡ 705σ11(n)
(
mod 214) for n ≡ 7 (mod 8); (6)

τ(n) ≡ n−610σ1231(n)
(
mod 36) for n ≡ 1 (mod 3); (7)

τ(n) ≡ n−610σ1231(n)
(
mod 37) for n ≡ 2 (mod 3); (8)

τ(n) ≡ n−30σ71(n)
(
mod 53) for n �≡ 0 (mod 5); (9)

τ(n) ≡ nσ9(n) (mod 7) for n ≡ 0,1,2,4 (mod 7); (10)

τ(n) ≡ nσ9(n)
(
mod 72) for n ≡ 3,5,6 (mod 7); (11)

τ(p) ≡ 0 (mod 23) for p prime,

(
p

23

)
= −1; (12)

τ(p) ≡ σ11(p)
(
mod 232) for p prime of the form u2 + 23v2; (13)

τ(p) ≡ −1 (mod 23) for other prime p; (14)

τ(n) ≡ σ11(n) (mod 691), (15)

where u,v are integers, σk(n) denotes the sum of the kth powers of the divisors of n,
and ( ·

· ) denotes the Legendre symbol.
All congruences are given with their respective authors in [11], except (13) which

is due to Serre. Swinnerton-Dyer showed that there are no congruences for τ(n) mod-
ulo primes other than 2, 3, 5, 7, 23 and 691.

Ramanujan [7] conjectured, and Deligne proved, the upper bound

∣∣τ(p)
∣∣ ≤ 2p

11
2 for p prime. (16)

We recall that the values of the tau function are almost always divisible by any
integer [10, p. 243].

In this paper, we will study the integers n for which τ(n) is an odd prime, disre-
garding the sign of τ(n). It is easily seen that τ(n) is odd if and only if n is an odd
square. Then from (1) one should expect the smallest integer n for which τ(n) is an
odd prime to be of the form pr where r is even and p odd prime.

Indeed, D. H. Lehmer [2] found that n = 63001 = 2512 is the smallest integer for
which τ(n) is prime:

τ
(
2512) = −80561663527802406257321747.
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Without the power of today’s computers, proving such a result was not straightfor-
ward.

2 LR numbers

We propose to define the LR family of integers, in memory of D.H. Lehmer and
S. Ramanujan, as follows:

Definition 1 Let p,q be odd primes. Then we define LR(p, q) := τ(pq−1). More
generally, we shall use the notation LR(p,n) := τ(pn−1) for all positive integers n

and we set the value LR(p,0) := 0.

The main motivation for the introduction of the previous definition is related to
Theorem 1, for which we will give a proof. It states a strong necessary condition on
the integers n such that τ(n) is an odd prime. Our notation will prove to be relevant as
the “diagonal” terms LR(p,p) have specific arithmetical properties (see Theorem 4).

In what follows, a prime p such that p � τ(p) is called ordinary. Otherwise p is
said to be non-ordinary.

Theorem 1 Let n be a positive integer such that τ(n) is an odd prime. Then n = pq−1

where p and q are odd primes and p is ordinary.

Remark 1 Only finitely many non-ordinary primes are known to exist: 2, 3, 5, 7,
2411, 7758337633. We expect them to be the smallest elements of a very thin infinite
set [4]. They are also referred to as supersingular primes.

Now we provide several formulations, notations, and intermediate results concern-
ing the LR numbers that will be useful in our study.

Let p be an odd prime. The recurrence relation (2) implies that LR(p,n) is the nth
term of the Lucas [3] sequence associated with the polynomial X2 − τ(p)X + p11.
Hence for n > 0, LR(p,n) is a polynomial of degree (n − 1) in τ(p) and p11:

LR(p,n) =
[ n−1

2 ]∑

k=0

(−1)k
(

n − 1 − k

k

)
p11kτ (p)n−1−2k. (17)

The divisibility property of the Lucas sequences applies:

if m | n, then LR(p,m) | LR(p,n). (18)

Our sequence has discriminant

Dp := τ(p)2 − 4p11 (19)

which is negative by (16). We get the general expression

LR(p,n) = αn
p − αp

n

αp − αp

, with αp = τ(p) + √
Dp

2
.
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Table 1 First values of τ(p),
θp/π , cos θp and sin θp

p τ(p) θp/π cos θp sin θp

2 −24 0.585426 −0.265165 0.964203

3 252 0.403225 0.299367 0.954138

5 4830 0.387673 0.345607 0.938379

7 −16744 0.560289 −0.188274 0.982117

11 534612 0.333173 0.500436 0.865773

13 −577738 0.569230 −0.215781 0.976442

17 −6905934 0.700803 −0.589825 0.807531

19 10661420 0.335570 0.493901 0.869518

23 18643272 0.402350 0.301988 0.953312

29 128406630 0.302561 0.581257 0.813720

31 −52843168 0.553006 −0.165756 0.986167

37 −182213314 0.569299 −0.215993 0.976395

41 308120442 0.433411 0.207673 0.978198

43 −17125708 0.502827 −0.008882 0.999961

47 2687348496 0.173811 0.854586 0.519310

Following Ramanujan [7], we define the angles θp ∈ (0,π) such that τ(p) =
2p

11
2 cos θp . Some values of τ(p) and θp/π are listed in Table 1. Then we derive

an equivalent formulation related to the Chebyshev polynomials of the second kind:

LR(p,n) = p
11(n−1)

2
sin(nθp)

sin θp

=
n−1∏

k=1

(
τ(p) − 2p

11
2 cos

kπ

n

)
. (20)

Hence, a fair estimation of the size of |LR(p,n)| is given by p
11
2 (n−1) in most

cases. This is supported by the numerical results.
Theorem 2, due to Murty, Murty and Shorey [6], proves that the tau function takes

any fixed odd integer value, and a fortiori any odd prime value, finitely many times.

Theorem 2 There exists an effectively computable absolute constant c > 0, such that
for all positive integers n for which τ(n) is odd, we have

∣∣τ(n)
∣∣ ≥ (logn)c.

The next result is somehow related to Theorem 2 (see Remark 2), and will be used
in the proof of Theorem 1.

Lemma 1 The equation τ(n) = ±1 has no solution for n > 1.

Proof (sketch) By property (1), we can assume without loss of generality that n = pr

for a prime p and integer r > 0. Thus τ(n) = LR(p, r + 1).
Now it suffices to apply known results on Lucas sequences (Theorems C, 1.3, and

1.4 in [1]) to show that LR(p, r + 1) has a primitive divisor. �
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Remark 2 It is not quite obvious for us if Lemma 1 is a corollary of Theorem 2, as
the latter appears to be essentially of qualitative nature. Moreover, the effectiveness
in the special case τ(n) = ±1 is nowhere mentioned in [6].

3 Proof of Theorem 1

Let n be a positive integer such that τ(n) is an odd prime.
It follows from the multiplicative property (1) and Lemma 1 that n is a power of a

prime p. Thus n = pr for some positive integer r and τ(n) = LR(p, r + 1).
From the divisibility property (18) and once again Lemma 1, it turns out that r +

1 = q where q is prime. Since LR(p,2) is even, we have r > 1 and q �= 2.
Now suppose that p is non-ordinary. We get p|τ(p) which in turn implies that

p2|τ(n) by (17). Therefore, we have reached a contradiction.

4 Arithmetical properties

The theory of Lucas sequences is well developed (see, e.g., [9]) and has many impli-
cations for the LR numbers. It leads to the arithmetical properties:

gcd
(
LR(p,m),LR(p,n)

) = LR
(
p,gcd(m,n)

); (21)

LR(p, q) ≡
(

Dp

q

)
(mod q); (22)

if q � p · τ(p), then q|LR

(
p,q −

(
Dp

q

))
; (23)

LR(p,2n + 1) = LR(p,n + 1)2 − p11LR(p,n)2 (24)

for m,n two positive integers and p,q two odd primes. The discriminant Dp is de-
fined by (19).

Theorems 3 and 4 will prove to be useful in our estimations and numerical calcu-
lations (see Sects. 6, 7 and Appendix). As they are also related to known properties
of the Lucas sequences, we only give sketches of proof.

Theorem 3 Let p and q be two odd primes, p ordinary.
If d is a prime divisor of LR(p, q), then d ≡ ±1 (mod 2q) or d = q .
Moreover, q|LR(p, q) if and only if q|Dp .

Proof (sketch) We consider the number LR(p,gcd(q, d − (
Dp

d
))) and we apply suc-

cessively (21) and (23). Then we get

gcd

(
q, d −

(
Dp

d

))
�= 1,

and the theorem follows by (22). �
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Theorem 4 Let p be an ordinary odd prime.
If p ≡ 1 (mod 4), then LR(p,p) is composite.
If p ≡ 3 (mod 4) and d is a prime divisor of LR(p,p), then d ≡ ±1 (mod 4p).

Proof (sketch) The first part of the theorem follows from formulation (20) leading to
the generic factorization LR(p,p) = N0N1 where

Nj =
p−1

2∏

k=1

(
τ(p) − (−1)j+k

(
2k

p

)
2p

11
2 cos

kπ

p

)
, for j = 0,1.

One may verify that N0 and N1 are integers using the Gauss sum value

p−1∑

k=1

(
k

p

)
e

2kiπ
p = √

p, for p ≡ 1 (mod 4).

For the second part, we apply (24) and obtain that p is a quadratic residue modulo d .
The desired result easily follows by combining the law of quadratic reciprocity with
the congruence d ≡ ±1 (mod 2p). �

5 Congruences modulo p ± 1

No congruence modulo p is known for τ(p) (see, e.g., [4]), hence a fortiori for
the numbers LR(p,n). Here we briefly study the sets P + and P − of primes p for
which the numbers LR(p,n) have elementary congruences modulo p + 1 and p − 1,
respectively, as specified in Lemma 2.

Lemma 2 Let P + be the set of odd primes p such that τ(p) ≡ 0 (mod p + 1). Let
p ∈ P +. Then LR(p,n) ≡ 0 (mod p+1) if n is even, and LR(p,n) ≡ 1 (mod p+1)

if n is odd.
Let P − be the set of odd primes p such that τ(p) ≡ 2 (mod p − 1). Let p ∈ P −.

Then LR(p,n) ≡ n (mod p − 1) for all positive integer n.

Proof (sketch) The recurrence relation (2) leads to an easy proof by induction for all
positive integers n. �

Lemma 3 states that P + and P − both include most of the small primes. Neverthe-
less, there is numerical evidence that they have density zero among the primes.

Lemma 3 Let A := 214 · 37 · 53 · 72 · 23 · 691, and let P +
0 be the set of odd primes p

such that p + 1|A. Then P +
0 ⊂ P +.

Let B := 211 · 36 · 53 · 7 · 691, and let P −
0 be the set of odd primes p such that

p − 1|B . Then P −
0 ⊂ P −.
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Proof (sketch) Let p ∈ P +
0 . Then p = 2r(2) ·3r(3) ·5r(5) ·7r(7) ·23r(23) ·691r(691) −1,

with r(q) ≤ 14,7,3,2,1,1 for q = 2,3,5,7,23,691, respectively.
From (3), (4), (5), (6), (8), (9), (11), (12), and (15), it follows that τ(p) ≡ 0

(mod qr(q)) for q = 2,3,5,7,23,691. Thus τ(p) ≡ 0 (mod p + 1), that is p ∈ P +.
Similarly, we prove that P −

0 ⊂ P − using (3), (4), (5), (6), (7), (9), (10), and (15). �

Remark 3 It is not possible to increase any of the exponents in the previous defini-
tions of A and B without finding counter-examples of Lemma 3.

Obviously, P +
0 and P −

0 are finite sets. They comprise respectively 1140 and 325
primes and their smallest and largest elements are given below:

– P +
0 = {3,5,7,11,13,17,19,23,29,31,41,47,53,59,71,79,83,89,97, . . . ,

1
6A − 1, 1

5A − 1} and max P +
0 ≈ 6.97 × 1014;

– P −
0 = {3,5,7,11,13,17,19,29,31,37,41,43,61,71,73,97, . . . , 1

32B+1,B+1}
and max P −

0 ≈ 9.02 × 1011.

Now if we define the residual sets P +
1 := P + \ P +

0 and P −
1 := P − \ P −

0 , it turns
out that

– P +
1 = {593,1367,2029,2753,4079,4283,7499,7883,9749,11549 . . .};

– P −
1 = {103,311,691,829,1151,1373,2089,2113,2411,2647, . . .}.

Note that

– P + contains the Mersenne primes Mp := 2p − 1 for p = 2, 3, 5, 7, 13, 17, and 19,
but M31 is not in P +;

– P − contains all known Fermat primes Fn := 22n + 1 for n = 0,1,2,3,4;
– P −

1 contains the non-ordinary prime 2411 (see Remark 1), but the next one,
7758337633, is not in P + ∪ P −.

6 Estimations

Here we provide various estimates on the number and distribution of LR primes with
only little justification. Then it will be compared with numerical results.

We refer to Wagstaff’s heuristic reasoning [12] about the probability for a
Mersenne number Mp to be prime, mainly considering that all divisors are of the
form 2kp + 1. The proposed value is

eγ log 2p

p log 2
,

where γ = 0.577215 . . . is Euler’s constant.
Let p and q be two odd primes such that p �= q and τ(p) �≡ 0 (mod p). We know

from Theorem 3 that all prime divisors of LR(p, q) are of the form 2kq ± 1, except
possibly q with probability P(q). The expected value of P(q) is roughly 1/q , unless
q = 3, 5, 7, or 23 for which we have the congruences (7) to (14). We easily get the
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exceptional values of P(q) for q = 3, 5 or 7 by considering all residues of p modulo q

(see also [10, 11]), whereas P(23) is the proportion of primes of the form u2 + 23v2:

P(3) = 1

2
; P(5) = 1

4
; P(7) = 1

2
; P(23) = 1

6
.

Now we estimate the probability that LR(p, q) is prime by

eγ log 2q

log |LR(p, q)|
(
1 − P(q)

) ≈ 2eγ log 2q

11(q − 1) logp

(
1 − P(q)

)
. (25)

In the general case where q �= 3,5,7,23, we have P(q) ≈ 1/q and (25) simplifies to

2eγ log 2q

11q logp
.

If we assume further that p = q and p ≡ 3 (mod 4), then the same reasoning,
using the results from Theorem 4, leads to the probability

eγ log 4p

log |LR(p,p)| ≈ 2eγ log 4p

11(p − 1) logp
. (26)

Now we consider two large integers pmax � 1 and qmax � 1. The expected num-
ber of primes of the form LR(p, q) for prime p fixed and q < qmax is

2eγ

11 logp

∑

odd prime q<qmax

log 2q

q
∼ 2eγ logqmax

11 logp
. (27)

Therefore, our estimate at first order for the number of primes of the form LR(p, q)

with p < pmax and q < qmax is

2eγ logqmax

11

∑

ordinary prime p<pmax

1

logp
∼ 2eγ pmax logqmax

11(logpmax)2
. (28)

Using (26), we also estimate the number of primes of the form LR(p,p) with
p < pmax by

2eγ

11

∑

ordinary prime p<pmax
p≡3 (mod 4)

log 4p

(p − 1) logp
∼ eγ

11
log logpmax. (29)

7 Numerical results

We have checked the (probable) primality of LR(p, q) for all pairs (p, q) of odd
primes in Table 2 (see Appendix for details). The estimates (*) follow from our first
order approximations (28) and (29), whereas the other estimates (**) are simply a
sum of the related expressions (25) or (26) over all considered p,q values. The latter
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Table 2 Counting the primes and PRP’s of the form LR(p, q)

Conditions on p,q Max. number
of digits

Number of (probable) primes

Actual Expected∗ Expected∗∗

(p < 106) and (q < 100) 3169 7312 7813 7203

(p < 20000) and (q < 1000) 23560 491 456 520

(p < 1000) and (q < 5000) 82432 76 57.8 74.7

(p < 300) and (q < 20000) 271302 32 29.6 38.9

(p < 100) and (q < 30000) 327687 17 15.7 18.3

p = q < 20000 472856 1 0.37 0.32

estimates are in good agreement with the numerical results when the number of LR
primes is significant.

In Table 3, we give a list of 81 pairs (p, q) of odd primes such that p < 1000
and LR(p, q) is prime or probable prime (PRP). The number of decimal digits is
ranging from 26 to 250924. The largest known prime value of the tau function is
LR(157,2207), thanks to F. Morain (see Appendix). So far, LR(41,28289) is the
largest known PRP value.

By estimation (27), we expect the existence of infinitely many primes of the form
LR(p, q) for each ordinary prime p. However, we found no PRP for p = 13,19,

23,31,37,43,53,61,67,71,73,83, . . . .

Remark 4 Considering the list p = 11,17,29,41,47,59,79,89,97, . . . for which
we know LR (probable) primes, it is remarkable that the six first values correspond
exactly to the odd values in the sequence of the Ramanujan primes: 2, 11, 17, 29,
41, 47, 59, 67, 71, 97, . . . . This sequence was introduced to provide a short proof of
Bertrand’s postulate [8]. However, we found no significant correlation past the value
59 and do not expect a close mathematical relationship between the tau function and
the Ramanujan primes.

Note that the only prime of the form LR(p,p) for p < 20000 is LR(47,47). Our
estimation (29) suggests the existence of infinitely many such values.

We give in Table 4 the number of PRP’s of the form LR(p, q), for each given odd
prime q < 100 and all p < 106, along with the estimates (**) obtained by summing
over prime p the expression (25). We partly explain the discrepancy between the
actual data and our expectations by considering the compositeness of some 2kq ± 1
numbers for small positive integers k. For example, if q = 59, then those numbers
are composite for k = 1,2,4,5,8, . . . , which in turn implies that LR(p,59) has no
divisor smaller than 353, except possibly p and 59. In this case, we observe that the
number of primes is effectively higher than expected.

Acknowledgements We are grateful to François Morain for his outstanding contribution to the nu-
merical results. We also would like to thank Marc Hufschmitt and Paul Zimmermann for their helpful
discussions, and the anonymous referee for his valuable suggestions.
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Table 3 Known pairs (p, q), p < 1000, such that LR(p, q) is prime (P) or probable prime (PRP). ECPP
(�) method has been used for the primality of two large values

p q Digits Primality p q Digits Primality

11 317 1810 P 439 29 407 P

17 433 2924 P 449 547 7965 PRP

29 31 242 P 461 3019 44215 PRP

29 83 660 P 463 2753 40347 PRP

29 229 1834 P 487 479 7066 PRP

41 2297 20367 PRP 491 167 2457 P

41 28289 250924 PRP 503 73 1070 P

47 5 37 P 557 109 1631 P

47 47 424 P 571 1091 16526 PRP

47 4177 38404 PRP 587 1093 16629 PRP

59 1381 13441 PRP 607 13 184 P

59 8971 87365 PRP 613 47 706 P

79 1571 16386 PRP 613 1013 15515 PRP

79 6317 65920 PRP 619 1297 19900 PRP

89 73 772 P 643 953 14703 P �
97 331 3606 P 673 1019 15834 PRP

97 887 9682 PRP 677 3 32 P

103 14939 165374 PRP 691 1523 23770 PRP

109 373 4169 PRP 739 2503 39475 PRP

113 197 2214 P 761 13 190 P

157 2207 26643 P � 773 67 1049 P

173 103 1256 P 787 73 1147 P

197 5 50 P 809 149 2367 P

199 4519 57125 PRP 811 43 671 P

223 101 1292 P 821 1163 18626 PRP

223 281 3617 P 829 11 161 P

223 9431 121795 PRP 839 4177 67153 PRP

227 11 130 P 857 683 11002 PRP

239 107 1387 P 857 3847 62042 PRP

251 3 26 P 877 3617 58531 PRP

251 1193 15733 PRP 881 241 3888 PRP

257 1699 22506 PRP 881 251 4050 PRP

281 19 243 P 937 59 949 P

331 2129 29492 PRP 941 349 5692 PRP

349 409 5706 PRP 947 41 654 P

353 239 3335 P 953 557 9111 PRP

379 11 142 P 971 3 33 P

401 59 831 P 971 433 7098 PRP

409 4423 63520 PRP 977 59 954 P

421 89 1271 P 983 3 33 P

421 317 4561 PRP
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Table 4 For odd primes
q < 100, actual and expected∗∗
number of primes p < 106 such
that LR(p, q) is PRP, and first
values of p

q Actual Expected∗∗ p

3 838 904 251, 677, 971, 983, 1229, . . .

5 910 871 47, 197, 1123, 2953, 3373, . . .

7 438 444 1151, 2141, 5087, 6907, 7129, . . .

11 663 567 227, 379, 829, 1217, 1367, . . .

13 593 506 607, 761, 1033, 1867, 1999, . . .

17 438 419 1301, 1319, 1373, 8363, 9209, . . .

19 321 386 281, 4751, 5717, 7103, 10181, . . .

23 273 293 1013, 2113, 6577, 6581, 8609, . . .

29 263 283 439, 1783, 3109, 3209, 3301, . . .

31 256 269 29, 6737, 7757, 8243, 8707, . . .

37 208 235 1061, 1217, 1621, 2699, 3167, . . .

41 214 217 947, 2671, 4817, 5231, 6079, . . .

43 242 209 811, 7549, 8089, 9337, 9923, . . .

47 232 195 47, 613, 1361, 2963, 4219, . . .

53 143 178 4153, 4457, 6311, 23209, 30211, . . .

59 232 163 401, 937, 977, 1609, 3121, . . .

61 181 159 1583, 1747, 5209, 7057, 10079, . . .

67 159 148 773, 1597, 2969, 3823, 4603, . . .

71 142 141 1601, 6469, 10037, 15391, 23371, . . .

73 144 138 89, 503, 787, 7687, 12689, . . .

79 104 129 21193, 23339, 31847, 38239, 38327, . . .

83 112 124 29, 2927, 3391, 7873, 8597, . . .

89 104 117 421, 2843, 4637, 4937, 5659, . . .

97 102 110 5261, 7537, 11933, 22613, 23627, . . .

Appendix: Computations

Here we provide a PARI/GP implementation of the LR numbers, using a known for-
mula (see, e.g., [4]) along with the recurrence relation (2).

LR(p,n)={
local(j,p11,s10,t,tp,t0,t1,t2,tmax);
tmax=floor(2*sqrt(p));
s10=sum(t=1, tmax, (t^10)*qfbhclassno(4*p-t*t));
tp=(p+1)*(42*p^5-42*p^4-48*p^3-27*p^2-8*p-1)-s10;
t0=1; t1=tp; p11=p^11;
for (j=1, n-2, t2=tp*t1-p11*t0; t0=t1; t1=t2);
if (n==1, t1=1);
return(t1)

}

We took about seven months of numerical investigations for primes of the form
LR(p, q), p and q odd primes, using the multiprecision software PARI/GP (version
2.3.5) and PFGW (version 3.4.5) through four stages:
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1. Finding small divisors of the form 2kq ± 1 with PARI/GP;
2. 3-PRP tests with PFGW;
3. APRCL primality tests for all PRP’s up to 3700 decimal digits with PARI/GP;
4. Baillie-PSW PRP tests for all PRP’s above 3700 decimal digits with PARI/GP.

Stage 4 leads to a greater probability of primality than stage 2 (there is no known
composite number which is passing this test), but takes more time.

We point out that François Morain provides primality certificates for two large LR
numbers (see diamonds � in Table 3) on his web page. He used his own software
fastECPP, implementing a fast algorithm of elliptic curve primality proving [5], on a
computer cluster. His calculations required respectively 355 and 2355 days of total
CPU time, between January and April 2011. Since LR(157,2207) has 26643 dec-
imal digits, it appears to be the largest prime certification using a general-purpose
algorithm, at the date of submission.
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