Remarques sur les Sédénions N. Lygeros

A partir de la découverte des quaternions par Hamilton, Cayley a créé une méthode qui permet de construire les octonions, appelés parfois nombres de Cayley. En réalité, la méthode de Cayley-Dickson permet aussi de construire des sédénions à partir des octonions. Les sédénions forment donc une algèbre à 16 dimensions dont la multiplication n'est ni commutative comme pour les quaternions, ni associative comme pour les octonions. Et elle possède naturellement des diviseurs de zéros dont les germes sont déjà dans les quaternions. Les sédénions peuvent être caractérisés par la table de Cayley suivante :

×	1	e_1	e_2	$ e_3 $	e_4	e_5	e_6	e ₇	e_8	e ₉	e_{10}	e ₁₁	e ₁₂	e ₁₃	e ₁₄	e ₁₅
1	1	e_1	e_2	e_3	e_4	e_5	e_6	e ₇	e_8	e ₉	e ₁₀	e ₁₁	e ₁₂	e ₁₃	e ₁₄	e ₁₅
e_1	e_1	-1	e_3	-e ₂	e_5	-e ₄	-e ₇	e_6	e ₉	-e ₈	-e ₁₁	e_{10}	-e ₁₃	e_{12}	e ₁₅	-e ₁₄
e_2	e_2	-e ₃	-1	e_1	e_6	e ₇	-e ₄	-e ₅	e_{10}	e ₁₁	-e ₈	-e ₉	-e ₁₄	-e ₁₅	e_{12}	e ₁₃
e_3	e_3	e_2	-e ₁	-1	e ₇	-e ₆	e_5	-e ₄	e ₁₁	-e ₁₀	e ₉	-e ₈	-e ₁₅	e ₁₄	-e ₁₃	e ₁₂
e_4	e_4	-e ₅	-e ₆	-e ₇	-1	e_1	e_2	e_3	e_{12}	e ₁₃	e ₁₄	e ₁₅	-e ₈	-e ₉	-e ₁₀	-e ₁₁
e_5	e_5	e_4	-e ₇	e_6	-e ₁	-1	-e ₃	e_2	e ₁₃	-e ₁₂	e ₁₅	-e ₁₄	e ₉	-e ₈	e ₁₁	-e ₁₀
e_6	e_6	e ₇	e_4	-e ₅	-e ₂	e_3	-1	-e ₁	e ₁₄	-e ₁₅	-e ₁₂	e ₁₃	e ₁₀	-e ₁₁	-e ₈	e ₉
e ₇	e ₇	-e ₆	e_5	e_4	-e ₃	-e ₂	e_1	-1	e ₁₅	e ₁₄	-e ₁₃	-e ₁₂	e ₁₁	e ₁₀	-e ₉	-e ₈
e_8	e_8	-e ₉	-e ₁₀	-e ₁₁	-e ₁₂	-e ₁₃	-e ₁₄	-e ₁₅	-1	e_1	e_2	e_3	e_4	e_5	e_6	e ₇
e ₉	e 9	e_8	-e ₁₁	e ₁₀	-e ₁₃	e ₁₂	e ₁₅	-e ₁₄	-e ₁	-1	-e ₃	e_2	-e ₅	e ₄	e ₇	-e ₆
e ₁₀	e_{10}	e ₁₁	e_8	-e ₉	-e ₁₄	-e ₁₅	e ₁₂	e ₁₃	-e ₂	e_3	-1	-e ₁	-e ₆	-e ₇	e_4	e_5
e ₁₁	e ₁₁	-e ₁₀	e ₉	e ₈	-e ₁₅	e ₁₄	-e ₁₃	e ₁₂	-e ₃	-e ₂	e_1	-1	-e ₇	e_6	-e ₅	e ₄
e ₁₂	e_{12}	e ₁₃	e ₁₄	e ₁₅	e_8	-e ₉	-e ₁₀	-e ₁₁	-e ₄	e_5	e_6	e ₇	-1	-e ₁	-e ₂	-e ₃
e_{13}	e ₁₃	-e ₁₂	e ₁₅	-e ₁₄	e ₉	e_8	e ₁₁	-e ₁₀	-e ₅	-e ₄	e ₇	-e ₆	e_1	-1	e_3	-e ₂
e ₁₄	e ₁₄	-e ₁₅	-e ₁₂	e ₁₃	e ₁₀	-e ₁₁	e_8	e 9	-e ₆	-e ₇	-e ₄	e ₅	e_2	-e ₃	-1	e_1
e ₁₅	e ₁₅	e_{14}	-e ₁₃	-e ₁₂	e_{11}	e_{10}	-e ₉	e_8	-e ₇	e_6	-e ₅	-e ₄	e_3	$ e_2 $	-e ₁	-1

Mais contrairement aux algèbres associatives, les sédénions ne peuvent être décrits comme des algèbres de matrices réelles. Car les sédénions ne vérifient que l'identité de Moufang à savoir : x((yz)x)=(xy)(zx).

La méthode de Cayley-Dickson se base sur la formule suivante :

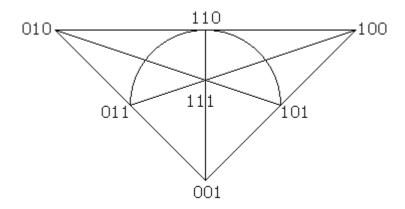
$$(x+yi)(u+vi) = (xu - \overline{v}y) + (vx + y\overline{u})i$$

Tandis que la méthode de Conway-Smith se base sur la formule suivante :

$$(x+yi)(u+vi) = (xu - \overline{(\overline{y}v)}) + (v\overline{u} + y\overline{(\overline{x}(\overline{y}^{-1}v))})i$$

où le dernier coefficient de i s'interprète $\overline{(\overline{xv})}$ si y=0. Toutes deux sont des méthodes itératives de constructions.

Tandis que l'approche qui permet de construire la table de Cayley des sédénions est d'ordre combinatoire et exploite le plan de Fano, à savoir :



Cela permet de faire le lien avec les géométries projectives. Mais aussi de préparer le terrain pour une intervention de la théorie des hypergroupes via la notion d'espace-joint. Car les sédénions à l'instar des quaternions et des octonions peuvent servir de base à d'autres constructions qui ne sont pas simplement l'élévation d'une tour exponentielle de deux. Les sédénions via l'identité de Moufang peuvent ainsi dépasser certaines difficultés liées à la notion d'associativité forte sans pour autant gêner les structures comme les H_v -groupes qui n'ont qu'une associativité faible.