Notes on uniting elements method and Cayley extensions

N. LYGEROS

Article Antampoufis, Spartalis and Vougiouklis : Fundamental relations in special extensions

Method Corsini and Vougiouklis : From groupoids to groups through hypergroups. Rendiconti di Matematica VII, 9 (1989),p 173-181

Notations G_4 : quaternion group, G_8 : octonion group

 $(S^n \times \mathbb{Z}_2, *)$ where S : s G_4 or G_8 , n > 1 and finite.

 $(a,b)*(c,d)=(a.c,b+d) \, \forall (a,b), (c,d) \in S^n \times \mathbb{Z}_2$

 $U = \{\bar{x} \mid x \in S^n \times \mathbb{Z}_2\}$ is the set of any partition of $(S^n \times \mathbb{Z}_2, *)$ for which two elements of $(S^n \times \mathbb{Z}_2, *)$ are put together, in the same partition class.

If $\bar{x} \circ \bar{y} = \{\bar{z} \in U \mid z \in \bar{x}.\bar{y}\} \forall \bar{x}, \bar{y} \in U$ then (U, \circ) is a H_v -group.

Theorem 1. Uniting the elements s and -s of S^n then the fundamental group $S^n/\beta^* = (\mathbb{Z}_2)^n$ if $S = G_4$ and $S^n/\beta^* = (\mathbb{Z}_2)^{2n}$ if $S = G_8$.

Theorem 2. Uniting the elements (s, p), (-s, p) of $S^n \times \mathbb{Z}_2$ then the fundamental group U/β^* is isomorphic to $S^n/\beta^* \times \mathbb{Z}_2$.

Theorem 3. Uniting the elements (x, p), (y, p) of $S^n \times \mathbb{Z}_2$, $y \neq \pm x$ the fundamental group U/β^* is isomorphic to S^n/β^* .

Theorem 4. Uniting the elements (s,0), (s,1) of $S^n \times \mathbb{Z}_2$, the fundamental group U/β^* is isomorphic to S^n .

Theorem 5. Uniting the elements (x, 0), (y, 1) of $S^n \times \mathbb{Z}_2$, $y \neq \pm x$ the fundamental group U/β^* is isomorphic to S^n/β^* .

This set of theorems proves de facto that the method of uniting elements via Cayley-Dickson method can be generalized to others groups.