Introduction aux hypergroupes généralisés de Marty-Moufang

N. Lygeros

 $| \forall x \in H : xH = Hx = H$ $\forall (x,y,z) \in H^3 : x(yz) = (xy)z$ (1) Hypergroupe de Marty

 $| \forall x \in H : xH = Hx = H$ (2) H_v-groupe de Vougiouklis

 $\forall (x,y,z) \in H^3: x(yz) \cap (xy)z \neq \emptyset$

 $: | \forall x \in H : xH = Hx = H$ (3) Hypergroupe de Marty-Moufang

 $\forall (x,y,z) \in H^3$: x((yx)z) = (xy)(xz)

(4) Hypergroupe généralisé de Marty-Moufang : $\forall x \in H : xH = Hx = H$

 $\forall (x,y,z) \in H^3: x((yx)z) \cap (xy)(xz) \neq \emptyset$

Par définition nous avons de manière élémentaire :

 $(3) \subset (4).$ $(1) \subset (2)$ et

De plus, comme l'identité de Moufang est plus faible que l'associativité, nous avons aussi :

 $(1) \subseteq (3).$

 $\forall (x,y,z) \in H^3$: x(yz) = (xy)zSoit P la propriété $\forall (x,y,z) \in H^3$: x((yx)z) = (xy)(xz)et Q la propriété

 $\exists (x,y,z) \in H^3: x(yz) \neq (xy)z$ Alors $\neg P$ $\exists (x,y,z) \in H^3: x((yx)z) \neq (xy)(xz)$

Comme $P \Rightarrow O$ nous avons aussi $\neg O \Rightarrow \neg P$.

¬P peut aussi s'interpréter comme :

 $\{ x(yz) \neq x(yz) \cap (xy)z \neq \emptyset$ ou $x(yz) \cap (xy)z = \emptyset$

Et $\neg Q$ comme :

 $\{ x((yx)z) \neq x((yx)z) \cap (xy)(xz) \neq \emptyset \text{ ou } x((yx)z) \cap (xy)(xz) = \emptyset \}$

Ainsi les Hy-groupes de Vougiouklis sont une combinaison de P et une partie de ¬P tandis que les hypergroups généralisés de Marty-Moufang sont une combinaison de Q et une partie de ¬Q. Ce sont donc deux généralisations incomparables en termes d'inclusion.