N. Lygeros*, T. Vougiouklis**

*Lgpc, University of Lyon, Lyon, France, **Democritus University of Thrace, School of Education w@lygeros.org, tvougiou@eled.duth.gr

Abstract

The largest class of hyperstructures is the one which satisfy the weak properties and they are called H_v -structures introduced in 1990. The H_v -structures have a partial order (poset) on which gradations can be defined. We introduce the LV-construction based on the Levels Variable.

Key words: hyperstructures, H_v -structures, hopes, weak hopes.

MSC2010: 20N20.

1 Fundamental Definitions

In a set *H* is called *hyperoperation* (abbreviation *hyperoperation=hope*) in a set *H*, is called any map $\cdot : H \times H \to \mathcal{P}(H) - \{\emptyset\}$.

Definition 1.1 (Marty 1934). A hyperstructure (H, \cdot) is a hypergroup if (\cdot) is an associative hyperoperation for which the reproduction axiom: $hH = Hh = H, \forall x \in H$, is valid.

Definition 1.2 (Vougiouklis 1990). In a set H with a hope we abbreviate by WASS the weak associativity: $(xy)z \cap x(yz) \neq \emptyset, \forall x, y, z \in H$ and by COW the weak commutativity: $xy \cap yx \neq \emptyset, \forall x, y \in H$. The hyperstructure (H, \cdot) is called H_v -semigroup if it is WASS, it is called H_v -group if it is reproductive H_v -semigroup, i.e. $xH = Hx = H, \forall x \in H$. The hyperstructure $(R, +, \cdot)$ is called H_v -ring if both (+) and (\cdot) are WASS, the reproduction axiom is valid for (+) and (\cdot) is weak distributive with respect to

 $(+): x(y+z) \cap (xy+xz) \neq \emptyset, (x+y)z \cap (xz+yz) \neq \emptyset, \forall x, y, z \in \mathbb{R}$

Definition 1.3 (Santilly-Vougiouklis). A hyperstructure (H, \cdot) which contain a unique scalar unit e, is called e-hyperstructure. A hyperstructure $(F, +, \cdot)$, where (+) is an operation and (\cdot) is a hyperoperation, is called *e-hyperfield* if the following axioms are valid:

- 1. (F, +) is an abelian group with the additive unit 0,
- 2. (\cdot) is WASS,
- 3. (·) is weak distributive with respect to (+),
- 4. 0 is absorbing element: $0 \cdot x = x \cdot 0 = 0, \forall x \in F$,
- 5. there exists a multiplicative scalar unit 1, i.e. $1 \cdot x = x \cdot 1 = x, \forall x \in F$,
- 6. for every $x \in F$ there exists a unique inverse x^{-1} , such that

$$1 \in x \cdot x^{-1} \cap x^{-1} \cdot x.$$

The elements of an e-hyperfield are called *e-hypernumbers*. In the case that the relation: $1 = x \cdot x^{-1} = x^{-1} \cdot x$, is valid, then we say that we have a strong *e-hyperfield*.

Construction 1.4. The Main e-Construction. Given a group (G, \cdot) , where e is the unit, then we define in G, a large number of hyperoperations (\otimes) as follows:

$$x \otimes y = \{xy, g_1, g_2, \ldots\}, \forall x, y \in G - \{e\}, \text{ and } g_1, g_2, \ldots \in G - \{e\}$$

 g_1, g_2, \ldots are not necessarily the same for each pair (x, y). Then (G, \otimes) becomes an H_v -group, in fact is H_b -group which contains the (G, \cdot) . The H_v -group (G, \otimes) is an *e*-hypergroup. Moreover, if for each x, y such that xy = e, so we have $x \otimes y = xy$, then (G, \otimes) becomes a strong *e*-hypergroup.

For more definitions and applications on H_v -structures, see the books and papers [1-20].

The main tool to study hyperstructures are the fundamental relations β^* , γ^* and ε^* , which are defined, in H_v -groups, H_v -rings and H_v -vector spaces, resp., as the smallest equivalences so that the quotient would be group, ring and vector space, resp. Fundamental relations are used for general definitions. Thus, an H_v -ring $(R, +, \cdot)$ is called H_v -field if R/γ^* is a field.

Definition 1.5. Let (H, \cdot) , (H, *) be H_v -semigroups defined on the same set H. Then (\cdot) is called *smaller* than (*), and (*) greater than (\cdot) , iff there exists an $f \in Aut(H, *)$ such that $xy \subset f(x * y), \forall x, y \in H$. Then we write $\cdot \leq *$ and we say that (H, *) contains (H, \cdot) . If (H, \cdot) is a structure then it is called *basic structure* and (H, *) is called H_b -structure.

Theorem 1.6 (The Little Theorem). Greater hopes than the ones which are WASS or COW, are also WASS or COW, respectively.

This Theorem leads to a partial order on H_v -structures, thus we have posets. The determination of all H_v -groups and H_v -rings is very interesting. To compare classes we can see the small sets. The problem of enumeration of classes of H_v -structures was started very early but recently we have results by using computers. The partial order in H_v -structures restricts the problem in finding the minimals.

2 Enumeration Theorems

Theorem 2.1 (Chung-Choi). There exists up to isomorphism, 13 minimal H_v -groups of order 3 with scalar unit, i.e. minimal e-hyperstructures of order 3.

Theorem 2.2 (Bayon-Lygeros).

- There exist, up to isomorphism, 20 H_v -groups of order 2.
- There exist, up to isomorphism, 292 H_v -groups of order 3 with scalar unit, i.e. e-hyperstructures of order 3.
- There exist, up to isomorphism, 6494 minimal H_v -groups of order 3.
- There exist, up to isomorphism, $1026462 H_v$ -groups of order 3.

Theorem 2.3 (Bayon-Lygeros).

- There exist, up to isomorphism, 631609 H_v -groups of order 4 with scalar unit, i.e. e-hyperstructures of order 4.
- There exist, up to isomorphism, 8.028.299.905 abelian Hv-groups of order 4.

Theorem 2.4 (Bayon-Lygeros).

• The number of abelian H_v-groups of order 4 with scalar unit (i.e. abelian e-hyperstructures) in respect with their automorphism group are the following

N. Lygeros, T. Vougiouklis

$ \operatorname{Aut}(H_v) $	1	2	3	4	6	8	12	24
				32		46	5510	626021

- There are 63 isomorphism classes of hyperrings of order 2.
- There are 875 isomorphism classes of H_v -rings of order 2.
- There are 33277642 isomorphism classes of hyperrings of order 3.

In all the above results we construct the poset of hyperstructures of order 2 and 3 in the sense of inclusion for hyperproducts. We compute the Betti numbers of the poset of Hv-groups of order 2 and we have the following results: (1,5), (2,4), (3,6), (4,4), (5,1). We also compute the Betti numbers of the poset of hypergroups of order 3 and we have the following results: (1,59), (2,168), (3,294), (4,438), (5,568), (6,585), (7,536), (8,480), (9,358), (10,245), (11,160), (12,66), (13,29), (14,10), (15,2), (16,1).

We explicitly compute the Cayley subtables of the minimal *e*-hyperstructures with $H = \{e, a, b\}$ and we have for the products (aa, ab, ba, bb) the following results: (b; e; e; a), (eb; a; a; e), (e; ab; ab; e), (a; eb; eb; a), (ab; ea; ea; e), (H; eb; a; ea), (H; a; eb; ea), (a; H; H; e), (b; H; H; e), (a; H; H; b), (H; b; a; H), (H; a; b; H), (H; e; ab; H).

3 Construction Theorems

There are several ways to organize such posets using hyperstructure theory. We present now a new construction on posets and we name this LVconstruction since it is based on gradations where the Levels are used as Variable. Thus LV means Level Variable.

Theorem 3.1. The LV-Construction I

Consider the set \mathbf{P}_n of all H_v -groups defined on a set of n elements. Take the following gradation on \mathbf{P}_n based on posets:

Level 0 (or grade 0), denoted by \mathbf{g}_0 , is the set of all minimals of \mathbf{P}_n . Level (grade) 1, denoted by \mathbf{g}_1 , is the set of all H_v -groups obtained from minimals by adding one only element to anyone of the results of the products of two elements on the minimals of \mathbf{P}_n , i.e. of \mathbf{g}_0 . Level 2 (or grade 2), denoted by \mathbf{g}_2 , is the set of all H_v -groups obtained from minimals by adding only two elements to anyone of the results of the products of two elements of the minimals \mathbf{g}_0 . Then inductively the Level k is defined, denoted by \mathbf{g}_k . In the

case that an H_v -group is obtained by adding k_1 elements of one minimal and by adding k_2 elements of another minimal then we consider that it belongs to the Level min (k_1, k_2) .

Denote by r the cardinality of the minimals, $|\mathbf{g}_0| = r$, and by s the number of levels. Take any H_v -group with r elements corresponding to the r elements of \mathbf{g}_0 , so we have an H_v -group ($\mathbf{g}_0, *$). Then we define a hope on

$$\mathbf{P}_n = \mathbf{g}_0 \cup \mathbf{g}_1 \cup \dots \cup \mathbf{g}_{s-1},$$

as follows

$$x \otimes y = \begin{cases} x * y, & \forall x, y \in \mathbf{g}_0 \\ \mathbf{g}_{\kappa+\lambda}, & \forall x \in \mathbf{g}_{\kappa}, y \in \mathbf{g}_{\lambda}, \text{ where } (\kappa, \lambda) \neq (0, 0) \end{cases}$$

Then the hyperstructure (\mathbf{P}_n, \otimes) is an H_v -group where its fundamental group is isomorphic to \mathbf{Z}_s , thus we have

$$\mathbf{P}_n/\beta^* \approx \mathbf{Z}_s$$

Proof. Let us correspond, numbered, the levels with the elements of \mathbf{Z}_s : $\mathbf{g}_i \rightarrow \underline{i}, i = 0, \dots, s - 1.$

From the definition of (\otimes) any hyperproduct of elements from several levels, apart of \mathbf{g}_0 , equals to only one special set of H_v -groups that constitute one level. Moreover we have

$$x \otimes y = \mathbf{g}_0, \forall x \in \mathbf{g}_{\kappa}, y \in \mathbf{g}_{-\kappa}, \text{ for any } \kappa \neq 0.$$

That means that the elements of \mathbf{g}_0 are β^* -equivalent. Therefore all elements of each level are β^* -equivalent and there are no β^* -equivalent elements from different levels. That proves that

$$\mathbf{P}_n/\beta^* \approx \mathbf{Z}_s.$$

The above is a construction similar to the one from the book [15, p.27] A generalization of the above construction is the following:

Theorem 3.2. The LV-Construction II

Consider a graded finite poset with n elements: $\mathbf{P}_n = \mathbf{g}_0 \cup \mathbf{g}_1 \cup \dots, \cup \mathbf{g}_{s-1}$, with s levels (grades) $\mathbf{g}_0, \mathbf{g}_1, \dots, \mathbf{g}_{s-1}$, such that

$$\sum_{i=0}^{s-1} |\mathbf{g}_i| = n.$$

N. Lygeros, T. Vougiouklis

Denoting $|\mathbf{g}_0| = r$, we consider two H_v -groups (\mathbf{E}, \cdot) and $(\mathbf{S}, *)$ such that $|\mathbf{E}| = r$, $|\mathbf{S}| = s$ and moreover \mathbf{S} has a unit single element e. Then we take 1:1 maps from \mathbf{E} onto \mathbf{g}_0 and from \mathbf{S} onto $\{\mathbf{g}_0, \mathbf{g}_1, \dots, \mathbf{g}_{s-1}\}$, so we obtain two H_v -groups: (\mathbf{g}_0, \cdot) and $(\mathbf{G} = \{\mathbf{g}_0, \mathbf{g}_1, \dots, \mathbf{g}_{s-1}\}, *)$ where $\mathbf{E} = \mathbf{g}_0$ corresponds to the single element e. We define a hope on \mathbf{P}_n as follows:

$$x \otimes y = \begin{cases} x \cdot y, & \forall x, y \in \mathbf{g}_0 \\ \mathbf{g}_{\kappa} * \mathbf{g}_{\lambda}, & \forall \mathbf{g}_{\kappa}, \mathbf{g}_{\lambda} \in \mathbf{G}, \text{ where } (\kappa, \lambda) \neq (0, 0) \end{cases}$$

Then the hyperstructure (\mathbf{P}_n, \otimes) is an H_v -group where its fundamental group is isomorphic to the fundamental group of $(\mathbf{S}, *)$, therefore we have

$$(\mathbf{P}_n, \otimes)/\beta^* \approx (\mathbf{S}, *)/\beta^*.$$

Proof. From the reproductivity of $(\mathbf{G}, *)$, for each $\mathbf{g}_{\kappa}, \kappa \neq 0$, there exists a \mathbf{g}_{λ} such that $\mathbf{g}_0 \in \mathbf{g}_{\kappa} * \mathbf{g}_{\lambda}$. But \mathbf{g}_0 is a single element of $(\mathbf{S}, *)$, therefore we have $\mathbf{g}_0 = \mathbf{g}_{\kappa} * \mathbf{g}_{\lambda}$. Then, by the definition, for any $x \in \mathbf{g}_{\kappa}, y \in \mathbf{g}_{\lambda}$ we have, $x \otimes y = \mathbf{g}_0$. Therefore, all the elements of \mathbf{g}_0 are β^* -equivalent. On the other side, from the definition, all elements of each level are β^* -equivalent and they are β^* -equivalent elements with different levels if and only if they are β^* -equivalent in $(\mathbf{G}, *)$. In other wards they follow exactly the β^* -equivalence of $(\mathbf{G}, *)$.

That proves that

$$(\mathbf{P}_n, \otimes)/\beta^* \approx (\mathbf{S}, *)/\beta^*.$$

With this LV-construction we can define the poset for H_v -groups of order 2. So we get a non-connected poset with Betti numbers for the two subposets (1,4), (2,4), (3,1) and (1,1), (2, 4), (3,6).

References

- [1] R. Bayon, N. Lygeros, *Les hypergroupes abéliens d'ordre 4*. Structure elements of hyper-structures, Xanthi, (2005), 35–39.
- [2] R. Bayon, N. Lygeros, Les hypergroupes d'ordre 3. Italian J. Pure and Applied Math., 20 (2006), 223–236.
- [3] R. Bayon, N. Lygeros, Advanced results in enumeration of hyperstructures, J. Algebra, 320 (2008), 821–835.
- [4] S-C. Chung, B-M. Choi. Hv-groups on the set $\{e, a, b\}$. Italian J. Pure and Applied Math., 10 (2001), 133–140.

- [5] P. Corsini, V. Leoreanu, *Applications of Hypergroup Theory*, Kluwer Academic Publ., 2003.
- [6] B. Davvaz, V. Leoreanu, *Hyperring Theory and Applications*, Int. Academic Press, 2007.
- [7] B. Davvaz, R.M. Santilli, T. Vougiouklis, Studies of multi-valued hyperstructures for characterization of matter and antimatter systems, J. Computational Methods in Sciences and Engineering 13, (2013), 37–50.
- [8] B. Davvaz, S. Vougioukli, T. Vougiouklis, On the multiplicative-rings derived from helix hyperoperations, Util. Math., 84, (2011), 53–63.
- [9] S. Hoskova, H_v-structures are fifteen, Proc. of 4th International mathematical workshop FAST VUT Brno, Czech Republic, (2005), 55-57, http://math.fce.vutbr.cz/~pribyl/workshop_2005/ prispevky/Hoskova.pdf
- [10] P. Kambaki-Vougioukli, A. Karakos, N. Lygeros, T. Vougiouklis, *Fuzzy instead of discrete*, Ann. Fuzzy Math. Informatics, V.2, N.1 (2011), 81–89.
- [11] P. Kambaki-Vougioukli, T. Vougiouklis, Bar instead of scale, Ratio Sociologica, 3, (2008), 49–56.
- [12] F. Marty, Sur un généralisation de la notion de groupe, 8ème Congrès Math. Scandinaves, Stockholm, (1934), 45–49.
- [13] T. Vougiouklis, Generalization of P-hypergroups, Rend. Circ. Mat. Palermo, S.II,36 (1987), 114-121.
- [14] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, 4thAHA Congress, World Scientific (1991), 203–211.
- [15] T. Vougiouklis, Hyperstructures and their Representations, Monographs in Math., Hadronic Press, 1994.
- T. Vougiouklis, Some remarks on hyperstructures, Contemp. Math., 184, (1995), 427–431.
- [17] T. Vougiouklis, On H_v -rings and H_v -representations, Discrete Math., 208/209 (1999), 615–620.
- [18] T. Vougiouklis, A hyperoperation defined on a groupoid equipped with a map, Ratio Mathematica on line, N.1 (2005), 25–36.

N. Lygeros, T. Vougiouklis

- [19] T. Vougiouklis, ∂ -operations and H_v -fields, Acta Math. Sinica, (Engl. Ser.), V.24, N.7 (2008), 1067-1078.
- [20] T. Vougiouklis, Bar and Theta Hyperoperations, Ratio Mathematica, 21, (2011), 27–42.