On the compact form of Catalan Numbers
 N. Lygeros

Catalan numbers turn up in many types of problems as the Euler's polygon division triangles or the solution to the ballot problem. But originally the Catalan numbers solve Catalan problem i.e.enumeration of binary bracketings. As they are isomorphic to binary trees with their enumeration we have the following recursive system: $a_{1}=a_{0} \cdot a_{0} a_{2}=a_{0} a_{1}+a_{1} a_{0}$ and $a_{n}=\sum_{0 \leq k \leq n-1} a_{k} a_{n-1-k} \quad n \geq 2$

So the generating function of this integer sequence is:
$C(t)=\sum_{n=0}^{\infty} a_{n} t^{n}=1+t+\sum_{n=2}^{\infty} a_{n} t^{n}=1+t+\sum_{n=2}^{\infty} t^{n}\left(\sum_{0 \leq k \leq n-2} a_{k} a_{n-1-k}\right)$
$C(t)=1+t \sum_{n=1}^{\infty} t^{n-1}\left(\sum a_{k} a_{k+1}\right)$
$C(t)=1+(-1) t \sum a_{k} \cdot a_{k} \cdot t^{k+h}=1+t-2 t+\left(\sum_{0} a_{k} t^{k}\right)\left(\sum_{0} a_{h} t^{h}\right)$
Let $n=k+h$, we get: $C(t)=-t+C^{2}(t)$
$\Delta=1+4 t$ and as $C(0)=1$ we get $: C(t)=(+1-O(1+4 t)) / 2$
$(1+t)^{\alpha}=1+\sum_{n \geq 1} \frac{\alpha(\alpha-1)(\alpha-2) \ldots .(\alpha-n+1)}{n!} t^{n}=1+\sum_{n=0}^{\infty} C_{\alpha}^{n} t^{n}=\sum_{n=0}^{\infty} C_{\alpha}^{n} t^{n}$
$(1+t)^{1 / 2}=1+\sum_{n \geq 1} \frac{1.3 \ldots .(2 n-3)}{2^{n} n!} t^{n}$
So the compact form of Catalan numbers is: $C_{n}=\frac{1}{n+1} C_{2 n}^{n}$

