Hyperstructures and Automorphism Groups

R. BAYON, N. LYGEROS

January 24, 2006
keywords : Automorphism groups, Hypergroups, Hyperstructures, $H_{v^{-}}$ groups, H_{m}-groups, H_{M}-groups, Moufang Identity, Rigidity
A.M.S. Classification - 20N20 - 06A11

Abstract

We first construct all the 14 rigid quasigroups of order n for $n>2$. We exhaustively study them in order to caracterize all rigid hyperstructures. Thus we show that there are 6 rigid hypergroups for $n>2,13$ rigid H_{v}-groups of order 3 and 14 rigid H_{v}-groups of order $n>3$. Finally we prove that there are 10 rigid H_{m}-groups of order $n>2$. We also recall our results on enumeration of hyperstructures which are validated by our caracterization of rigid hyperstructures.

Introduction and Definitions

Definition 1. An hypergroupoid $<H, .>$ is a set H equipped with an hyperoperation (.) : $H \times H \longrightarrow \mathcal{P}(H)$.

Definition 2. A quasigroup is an hypergroupoid verifying the axiom of reproduction: $\forall x \in H x H=H x=H$.

Definition 3 (F. Marty [22, 23, 24]). An hypergroup $<H, .>$ is a quasigroup verifying associativity : $\forall x, y, z \in H x(y z)=(x y) z$.

Definition 4 (Th. Vougiouklis [29]). $\langle H,$.$\rangle is a H_{v}$-group if the following axioms hold :
(i) $x(y z) \cap(x y) z \neq \emptyset$ for all x, y, z in H (weak associativity)
(ii) $x H=H x=H$ for all x in H (reproduction)

Definition 5 (Th. Vougiouklis [30]). An hyperoperation (.) is called smaller than the hyperoperation (*), and written as.$<*$, if and only if there is an $f \in \operatorname{Aut}(H, *)$ such that $x y \subseteq f(x * y)$ for all x, y in H. He defines too the notion of minimality [32] : An hyperoperation is called minimal if it contains no other hyperoperation defined on the same set. So we can construct posets defined on set of hyperstructures.

Theorem 1 (Th. Vougiouklis [30, 31]). A greater hyperoperation than the one of a given H_{v}-group defines a H_{v}-group.

Definition 6 (R. Bayon - N. Lygeros [1, 18, 19]). An hyperstructure $<H, .>$ is called a Marty-Moufang hypergroup and noted H_{m}-group if the reproduction axiom is valid and (.) verifies the Moufang identity [26, 27] : $(x y)(z x)=$ $x((y z) x)$.

Remark 1. $(H, b c, a c, a c, b c, a b, b c, a, a)$ is a H_{m}-group but it is not a H_{v}-group $: c(b b)=\{a\}$ and $(c b) b=\{b, c\}$.

Definition 7. An hyperstructure $<H, .>$ is called a weak Marty-Moufang hypergroup and noted H_{M}-group if the reproduction axiom is valid and (.) verifies the weak Moufang identity : $(x y)(z x) \cap x((y z) x) \neq \emptyset$.

Definition 8 ([11, 13, 14, 15, 16, 21]). $<H, .>$ is a rigid hypergroupoid if and only if for all $f \in S_{n}$ and $\forall x, y \in H f(x) . f(y)=f(x . y)$.

Definition 9. Let be (.) and (*) two hyperoperations on H we said (*) is dual of (.) if and only if $\forall x, y \in H x . y=y * x$.

1 Quasigroups and Rigidity

1.1 Some Preliminary Results

Fact 1. H is a quasigroup if and only if $d(H)$ is a quasigroup.
Fact 2. H is a H_{v}-group if and only if $d(H)$ is a H_{v}-group.
Fact 3. H is a H_{m}-group if and only if $d(H)$ is a H_{m}-group.
Fact 4. H is an hypergroup if and only if $d(H)$ is an hypergroup.
Fact 5. If (.) is rigid and $\left({ }^{*}\right)$ is dual of (.) then (*) is rigid.
Proof. By contradiction : suppose $\left(^{*}\right)$ non rigid i.e. $\exists f \in S_{n}$ such that $f(x) *$ $f(y) \neq f(x * y)$ this implies $f(y) . f(x) \neq f(y \cdot x)$ (because $\forall x, y x \cdot y=x * y)$: contradiction with rigidity of (.).

Proposition 1. Let be $<H, .>$ a rigid quasigroup then all squares have same length and all cross products have same length.

Proof. By contradiction : Let be $<H, .>$ a rigid quasigroup such that $\exists(x, y) \in H^{2} / x \neq y$ and $x x=S y y=S^{\prime}$ with $|S| \neq\left|S^{\prime}\right|$. Let

$$
f:\left\{\begin{array}{l}
x \mapsto y \\
y \mapsto x \\
z \mapsto z \text { for } z \neq x \text { and } z \neq y
\end{array}\right.
$$

When applying f to the Cayley table of H, we obtain another Cayley table such that $x x=f\left(S^{\prime}\right)$ et $y y=f(S)$. However $|f(S)|=|S|$ and $\left|f\left(S^{\prime}\right)\right|=\left|S^{\prime}\right|$, so the resulting Cayley table is different from the first one. This contradicts rigidity of H. We similarly prove this result for cross product.

Corollary 1. If H is a rigid quasigroup and there exists $x \in H$ such that $x x=H$ then $\forall x \in H x x=H$.

Definition 10. Let be $x . y$ an hyperproduct, completing $x . y$ such that $x . y=H$ is called completion of $x . y$.

Definition 11. Let be $<H, .>$ a quasigroup, we note $<H,->$ the quasihypergroup obtained by completion of all cross products of H.

Definition 12. Let be $<H, .>$ a quasigroup, we note $<H, \tilde{.}>$ the quasigroup obtained by completion of squares of H.
Fact 6. If $<H, .>$ is a quasigroup then $\langle H,-\rangle$ and $<H, . \sim\rangle$ are quasigroups.
Fact 7. If $<H,$.$\rangle is a H_{v}$-group then $\langle H,-\rangle$ and $\langle H, . \sim\rangle$ are H_{v}-groups.
Proposition 2. If $<H, .>$ is a rigid quasigroup then $<H, .>$ is a rigid quasigroup.
Proof. By contradiction : Suppose $<H,$.$\rangle rigid and \langle H,-\rangle>$ non rigid.
$<H, \cdot>$ non rigid i.e. $\exists f: H \rightarrow H / f(x . y) \neq f(x) \cdot f(y)$
but if $x \neq y$ x. $y=H=f(H)=f(x . y)=f(x)^{-} \cdot f(y)$
this implies $\exists f: H \rightarrow H / f(x \cdot x) \neq f(x) \cdot f(x)$ for some x of H.
Contradiction with rigidity of $\langle H,$.$\rangle .$
Proposition 3. If $<H, .>$ is a rigid quasigroup then $\langle H, . \tilde{.}\rangle$ is a rigid quasigroup.

Proof. Similar as previous proposition.

1.2 Rigid Quasigroups

Fact 8. The following hypergroupoids $<H, .>$ are not quasigroups :

- $x x=x$ and $x y=x$
- $x x=x$ and $x y=y$
- $x x=H-\{x\}$ and $x y=x$
- $x x=H-\{x\}$ and $x y=y$
- $x x=H-\{x\}$ and $x y=H-\{x\}$
- $x x=H-\{x\}$ and $x y=H-\{y\}$
- $x x=H-\{x\}$ and $x y=H-\{x, y\}$

Proposition 4. If $<H, .>$ is a rigid quasigroup with $|H|>2$, there exists only three possible squares :

- $\forall x \in H, x x=x$
- $\forall x \in H, x x=H-\{x\}$
- $\forall x \in H, x x=H$

Proof. If there exists x of H such that $x \in x x$ then, by transposition, for all x of H, x belongs to $x x$.

In the same way, if there exists x of H such that $x \notin x x$ then for all x of H, x does not belong to $x x$.

If there exists $y \neq x$, such that y belongs to $x x$. Let be z different from x and $y ; x x=S \cup y$ and suppose that z does not belong to S. Let be f the transposition of y and z, then f induces a new labeling of $H(x x=S \cup z$ because $f(S)=S)$: that contradicts the rigidity of H. Consequently if there exists y different from x with $y \in x x$, then all y different from x belongs to $x x$.

Proposition 5. If $<H, .>$ is a rigid quasigroup with $|H|>2$, there exists only seven possible cross products :
(i) $\forall x, y \in H(x \neq y), x y=x$
(ii) $\forall x, y \in H(x \neq y), x y=y$
(iii) $\forall x, y \in H(x \neq y), x y=H-\{x\}$
(iv) $\forall x, y \in H(x \neq y), x y=H-\{y\}$
(v) $\forall x, y \in H(x \neq y), x y=H-\{x, y\}$
(vi) $\forall x, y \in H(x \neq y), x y=\{x, y\}$
(vii) $\forall x, y \in H(x \neq y), x y=H$

Proof. Suppose there exists $(x, y) \in H^{2}$ with $x \neq y$ and $x \in x y$. Let z in H and f be the transposition of x and z, then z is in $z y$ because of definition 6 . This time, let be f the transposition of z and y, then x is in $x z$. So if there exists a (x, y) in $H^{2}($ with $x \neq y)$ such that $x \in x y$ then for all (x, y) in H^{2} (with $x \neq y$), x belongs to $x y$. In the same way we show the following results :

- if there exists a (x, y) in H^{2} (with $\left.x \neq y\right)$ such that $y \in x y$ then for all (x, y) in H^{2} (with $x \neq y$), y belongs to $x y$.
- if there exists a (x, y) in H^{2} (with $x \neq y$) such that $x \notin x y$ then for all (x, y) in H^{2} (with $x \neq y$), x does not belong to $x y$.
- if there exists a (x, y) in H^{2} (with $x \neq y$) such that $y \notin x y$ then for all (x, y) in H^{2} (with $x \neq y$), y does not belong to $x y$.

Let $\alpha \in H$ with $\alpha \neq x$ and $\alpha \neq y$, so by rigidity α is in $x y$ (using the transposition of α and z). So $H-\{x, y\} \in x y$ and, by combination of proposition 1 and previous result, this implies that if there exists a (x, y, z) in H^{3} with $x \neq y, x \neq z$ and $y \neq z$ such that $z \in x y$ then $\forall x, y H-\{x, y\} \subset x y$.

The combination of the five previous results proves the current proposition.

We summarize our results in table 1.

	x.y						
x.x	x	y	$H-\{x\}$	$H-\{y\}$	$H-\{x, y\}$	$\{x, y\}$	H
x	-	-	$H_{v 1}$	$d\left(H_{v 1}\right)$	Q_{1}	H_{1}	H_{2}
$H-\{x\}$	-	-	-	-	-	H_{3}	H_{4}
H	$H_{v 2}$	$d\left(H_{v 2}\right)$	$H_{v 3}$	$d\left(H_{v 3}\right)$	$H_{v 4}$	H_{5}	H_{6}

Table 1: Rigid Quasigroups

2 An Exhaustive Study of Rigid Quasigroups

We now precise the nature of rigids quasigroups.
Proposition 6. $H_{v 1}$ and $d\left(H_{v 1}\right)$ are H_{v}-groups.
Proof. $H_{v 1}$ is not an hypergroup : $x(y y)=x y=H-\{x\}$ and $(x y) y=$ $H-\{x\} . y \supset z y=H-\{z\} \ni x$.
If x, y, z are all different, $x(y z)=x . H-\{y\} \supset x \cdot\{x, z\}=\{x\} \cup H-\{x\}=H$. If $x \neq y,(x x) y=x y=H-\{x\}$ and $x(x y)=x \cdot H-\{x\} \supset x y=H-\{x\}$. If $x \neq y,(x y) x=H-\{x\} . x \supset y \cdot x \ni x$ and $x(y x)=x \cdot H-\{y\} \supset x x=x$. If $x \neq y, x(y y)=x y=H-\{x\} \ni y$ and $(x y) y=H-\{x\} . y \ni y$.

Thanks to facts 2 and $4, d\left(H_{v 1}\right)$ is an H_{v}-group and is not an hypergroup.

Proposition 7. $H_{v 2}$ and $d\left(H_{v 2}\right)$ are H_{v}-groups.
Proof. $H_{v 2}$ is not an hypergroup : if $x \neq y,(y x) y=y y=H$ and $y(x y)=y x=$ y.
$\forall(x, y, z) \in H^{3},(x y) z \supset x z \supset\{x\}$ and $x(y z) \supset x y \supset\{x\}$.
So $H_{v 2}$ is an H_{v}-group.
Thanks to facts 2 and $4, d\left(H_{v 2}\right)$ is an H_{v}-group and is not an hypergroup.

Proposition 8. $H_{v 3}$ and $d\left(H_{v 3}\right)$ are H_{v}-groups.
Proof. $H_{v 3}$ is not an hypergroup : if $x \neq y,(x x) y=H y=H$ and $x(x y)=$ $x . H-\{x\} \nexists x$.
So $H_{v 3}$ is an H_{v}-group (by completion of squares of $H_{v 1}$).
Thanks to facts 2 and $4, d\left(H_{v 3}\right)$ is a H_{v}-group and is not an hypergroup.

Proposition 9. $H_{v 4}$ and $d\left(H_{v 4}\right)$ are H_{v}-groups.
Proof. If x, y, z are all different : $(x y) z=H-\{x, y\} . z=H$, then $(x y) z \cap$ $x(y z) \neq \emptyset$.
If $x \neq y,(x x) y=H$ then $(x x) y \cap x(x y) \neq \emptyset$.
If $x \neq y, x(y y)=H$ then $(x y) y \cap x(y y) \neq \emptyset$.
If $x \neq y$, then $(x y) x=(y x) x=x(y x)$ (because $H_{v 4}$ is abelian).
$H_{v 4}$ is not an hypergroup : if $x \neq y, x(y y)=H$ and $(x y) y=H-\{x, y\} . y \nexists y$.
Thanks to facts 2 and $4, d\left(H_{v 4}\right)$ is not an hypergroup and is a H_{v}-group.

Proposition 10. Q_{1} is a quasigroup at order 3 and a H_{v}-group at order greater than 3.

Proof. For $H=\{x, y, z\}, Q_{1}$ is not a H_{v}-group : if x, y, z are all different $(x y) z=z z=z$ and $x(y z)=x x=x$.
For $H \supset\{x, y, z, \alpha\}, Q_{1}$ is a H_{v}-group.
If x, y, z are all different $: x(y z)=x \cdot H-\{y, z\} \supset x \cdot\{x, \alpha\}=x \cup x . \alpha \supset$ $H-\{x, \alpha\} \supset y$ and $(x y) z=H-\{x, y\} . z \supset\{z, \alpha\} . z=z \cup \alpha z \supset H-\{\alpha, z\} \supset y$. If $x \neq y,(x x) y=x y=H-\{x, y\}$ and $x(x y)=x \cdot H-\{x, y\} \supset x \cdot\{z, \alpha\}=$ $H-\{x, z\} \cup H-\{x, \alpha\} \supset\{z, \alpha\}$.
If $x \neq y,(x y) y=x(y y)$ with previous result and because Q_{1} is abelian.
If $x \neq y,(x y) x=x(x y)=x(y x)$.

3 Hypergroups

Proposition 11. If $<H, .>$ is an abelian rigid hypergroup with $|H|>2$ then there exists two types of possible cross products:

- $x y=\{x, y\}$
- $x y=H$

Proof. If there exists $z \in H$ so that $z \neq x, z \neq y$ and $z \in x y$, so by rigidity for any $x y$ cross product $H-\{x, y\} \subset x y$ (For that, consider the α different from $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and the (z, α) transpositions).

Let us suppose there exist x, y with $x \neq y$ so that $x \notin x y$ so, with the previous assumption, we have for any $x \neq y H-\{x, y\}=x y$ (indeed, if $x \notin x y$ by commutativity $y \notin x y$ et $x y \neq \emptyset$ hyperoperation's definition). Now let us consider every possible squares :

- $x x=H$

Let's compute $(x x) y=H y$ or $x y=H-\{x, y\}$, so $H y \not \supset y$ which contradicts the reproduction.

- $x x=x$
$(x x) y=x y=H-\{x, y\}$ and $x(x y)=x . H-\{x, y\}$ so $H-\{x, y\} \notin x(x y)$ which contradicts the associativity.
- $x x=H-\{x\}$
$(x x) y=H-\{x\} . y$ so $(x x) y=\{x\}$ or $(x x) y=\emptyset x(x y)=x . H-\{x, y\}$ and so $x \notin x(x y)$ which contradicts the associativity.

So we have shown that for every cross products $\{x, y\} \subset x y$. By exploiting our first affirmation we have then two types of cross products: either, for every $x y, x y=H$, or, for every $x y, x y=\{x, y\}$.

We know that non-abelian rigid quasigroups are not hypergroups. So we can verify, via the combination of all the square products with all the cross products, that $H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}$ are hypergroups.

Proposition 12. $H_{1}, H_{2}, H_{3}, H_{4}, H_{5}$ and H_{6} are hypergroups.

$4 \quad H_{m}$-groups

Proposition 13. $Q_{1}, H_{v 2}$ and $H_{v 4}$ are not H_{m}-groups.
Proof. Q_{1} : If $Q_{1}=\{x, y, z\}$ and $x \neq y,(x y)(y x)=z z=z$ and $x((y y) x)=$ $x(y x)=x z=y$
If $Q_{1} \supset\{x, y, z, \alpha\}(x y)(y x) \supset\{z, \alpha\} .\{z, \alpha\} \supset z \alpha=H-\{z, \alpha\} \ni x$ and $x((y y) x)=x . H-\{x, y\} \nexists x$.
$H_{v 2}:$ if $x \neq y,(x y)(x x)=H$ and $x((y x) x)=x(y x)=x y=x$
$H_{v 4}$: if $x \neq y,(x x)(y x)=H$ and $x((x y) x)=x(H-\{x, y\} . x)$, or $x \notin$ ($H-\{x, y\} . x$ so $x \notin x((x y) x)$.

Proposition 14. $H_{v 1}$ and $d\left(H_{v 1}\right)$ are H_{m}-groups.
Proof. If x, y, z are all different, $(x y)(z x)=H-\{x\} . H-\{z\} \supset y .\{x, y\}=H$ and $x((y z) x)=x(H-\{y\} \cdot x) \supset x .(\{x, z\} \cdot x) \supset x H=H$.
If $x \neq y,(x x)(y x)=x . H-\{y\} \supset x .\{x, z\}=H$ and $x((x y) x)=x(H-\{x\} . x) \supset$ $x(\{y, z\} \cdot x)=x(H-\{y\} \cup H-\{z\})=H$
If $x \neq y,(x y)(x x)=H-\{x\} . x \supset\{y, z\} \cdot x=H-\{y\} \cup H-\{z\}=H$ and $x((y x) x)=x(H-\{y\} \cdot x) \supset x(\{x, z\} \cdot x)=x(x x \cup z x)=x \cdot H-\{z\} \supset x . y \cup x x=$ H
If $x \neq y,(x y)(y x)=H-\{x\} \cdot H-\{y\} \supset z \cdot\{x, z\}=H$ and $x((y y) x)=x(y x)=$ $x . H-\{y\} \supset x .\{x, z\}=H$

Thanks to facts $3, d\left(H_{v 1}\right)$ is a H_{m}-group.
Proposition 15. $H_{v 3}$ and $d\left(H_{v 3}\right)$ are H_{m}-groups.
Proof. If x, y, z are all different, $(x y)(z x)=H-\{x\} . H-\{z\} \supset y y=H$ and $x((y z) x)=x(H-\{y\} x)=x H=H$
If $x \neq y,(x x)(y x)=H$ and $x((x y) x)=x(H-\{x\} . x) \supset x(y x)=x . H-\{y\} \supset$ $x x=H$

$$
\text { If } x \neq y,(x y)(x x)=H \text { and } x((y x) x)=x(H-\{y\} . x) \supset x(x x)=H
$$

If $x \neq y,(x y)(y x)=H-\{x\} . H-\{y\} \supset z z=H$ and $x((y y) x)=H$.
Thanks to facts $3, d\left(H_{v 3}\right)$ is a H_{m}-group.

5 Enumeration

In the enumeration theory we already obtained some results in different fields $[7,8,9,10,20]$. And in our previous work we enumerate and classify the hypergroups of order $3[3,5]$ and abelian hypergroups of order $4[4]$. We then study the H_{v}-groups of order 3 [6], and abelian H_{v}-groups of order 4 with Marty-Moufang hypergroups [1].

Thanks to these enumerative results we can caracterize some hyperstructures, has shown here with rigid hyperstructures or with hypocomplete hypergroups $[3,17]$. The obtained results contribute consequently to validate our algorithm. We could confirm the results of R. Migliorati [25], some results of S-C. Chung and B-M Choi [12] and some results of Th. Vougiouklis [32, 33] too. We present now, the best computational results in this fields.

Theorem 2 (G. Nordo [28]). There are 3.999 isomorphism classes of hypergroups of order 3 (see table 2).

Theorem 3 (R. Bayon - N. Lygeros [4]). There are 10.614.362 isomorphism classes of abelian hypergroups of order 4 (see table 3).

Theorem 4 (R. Bayon - N. Lygeros [6]). There are 20 isomorphism classes of H_{v}-groups of order 2 (see table 4).

Theorem 5 (R. Bayon - N. Lygeros [6]). There are 1.026.462 isomorphism classes of H_{v}-groups of order 3 (see table 5).

Theorem 6 (R. Bayon - N. Lygeros [2]). There are 8.028.299.905 isomorphism classes of abelian H_{v}-groups of order 4 (see table 6).

Theorem 7 (R. Bayon - N. Lygeros [1]). There are 10 isomorphism classes of Marty-Moufang hypergroups of order 2 (see table 7).

Theorem 8 (R. Bayon - N. Lygeros [1]). There are 96.058 isomorphism classes of H_{m}-groups of order 3 (see table 8).

		Classes						
		Abelians			non Abelians			
		Cyclics	non Cyclics		Cyclics	non Cyclics		
		Proj.	non Proj.	Proj.		non Proj.		
\mid Aut (H)\|	1		4	2	-	-	-	-
	2	3	-	-	6	1	-	
	3	70	3	5	154	8	4	
	6	360	2	17	3279	20	61	

Table 2: Classification of hypergroups of order 3

		Classes				
		Cyclics	non Cyclics			
		Proj.	non Proj.			
\|Aut(H)		1		4	2	-
	2	-	-	-		
	3	14	2	2		
	4	162	7	13		
	6	312	5	20		
	8	246	-	4		
	12	37.426	54	801		
	24	10.569.502	53	5.733		

Table 3: Classification of abelian hypergroups of order 4

$H_{v^{-}}$group	$\left\|A u t\left(H_{v}\right)\right\|$	$H_{v^{-}}$group	$\left\|A u t\left(H_{v}\right)\right\|$
$(a ; b ; b ; a)^{*}$	2	$(H ; a ; H ; b)^{*}$	2
$(H ; b ; b ; a)$	2	$(a ; H ; H ; b)^{*}$	1
$(a ; H ; b ; a)$	2	$(H ; a ; a ; H)$	2
$(a ; b ; H ; a)$	2	$(H ; b ; a ; H)$	1
$(H ; a ; a ; b)^{*}$	2	$(H ; a ; b ; H)$	1
$(H ; H ; b ; a)$	2	$(H ; H ; H ; a)^{*}$	2
$(H ; b ; H ; a)$	2	$(H ; H ; H ; b)^{*}$	2
$(a ; H ; H ; a)$	2	$(H ; H ; a ; H)$	2
$(b ; H ; H ; a)$	1	$(H ; H ; b ; H)$	2
$(H ; H ; a ; b)^{*}$	2	$(H ; H ; H ; H)^{*}$	1

Table 4: H_{v}-groups of Order $2(H=\{a, b\})$

		Classes					
		Abelian			non Abelians		
		Cyclics	non Cyclics Proj. non Proj.		Cyclics	non Cyclics	
$\left\|A u t\left(H_{v}\right)\right\|$	1	5	2	-	4	2	-
	2	8	1	1	47	5	7
	3	243	8	14	2034	66	76
	6	7439	10	195	1003818	1083	11394

Table 5: Classification of H_{v}-groups of order 3

		Classes		
		Cyclics	non Cyclics Proj.	
non Proj.				
\mid Aut $\left(H_{v}\right) \mid$	1	5	3	-
	2	-	-	-
	3	38	5	6
	6	582	22	39
	8	2.215	45	144
	12	1.859 .161	39	144
	24	7.994 .020 .227	86.159	32.287 .322

Table 6: Classification of abelian H_{v}-groups of Order 4

H_{m}-group	\mid Aut $\left(H_{m}\right) \mid$
$(a ; b ; b ; a)^{*}$	2
$(H ; H ; H ; a)^{*}$	2
$(H ; a ; a ; b)^{*}$	2
$(H ; H ; a ; b)^{*}$	2
$(H ; a ; H ; b)^{*}$	2
$(a ; H ; H ; b)^{*}$	1
$(H ; H ; H ; b)^{*}$	2
$(H ; H ; a ; H)$	2
$(H ; H ; b ; H)$	1
$(H ; H ; H ; H)^{*}$	1

Table 7: Isomorphism classes of Marty-Moufang Hypergroups of order 2.

\mid Aut $\left(H_{m}\right) \mid$	1	2	3	6
	10	30	770	95.248

Table 8: Number of Marty-Moufang Hypergroups isomorphism classes relatively to the order of their automorphism groups

Acknowledgements

We thank Ph. Alsina, P. Deloche and Y. Martinez for their precious help.

References

[1] R. Bayon and N. Lygeros. The $H_{v^{-}}$groups and Marty-Moufang Hypergroups. In Proceedings of First International Conference on Algebraic Informatics, pages 285-294. Aristotle University of Thessaloniki, 2005.
[2] R. Bayon and N. Lygeros. Number of abelian H_{v}-groups of order n. In N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/projects/OEIS?Anum=A108089, 2005.
[3] R. Bayon and N. Lygeros. Catégories spécifiques d'hypergroupes d'ordre 3. In Eléments structurels de la théorie des hyperstructures: Colloque de l'Université de Thrace, march 2005.
[4] R. Bayon and N. Lygeros. Les hypergroupes abéliens d'ordre 4. In Eléments structurels de la théorie des hyperstructures: Colloque de l'Université de Thrace, march 2005.
[5] R. Bayon and N. Lygeros. Les hypergroupes d'ordre 3. Italian Journal of Pure and Applied Mathematics, to appear.
[6] R. Bayon and N. Lygeros. Les hypergroupes et $H_{v^{-}}$-groupes d'ordre 3 . Bulletin of the Greek Mathematical Society, to appear.
[7] R. Bayon, N. Lygeros, and J.-S. Sereni. Nouveaux progrès dans l'énumération des modèles mixtes. In Knowledge discovery and discrete mathematics: JIM'2003, pages 243-246, Université de Metz, France, 2003. INRIA.
[8] R. Bayon, N. Lygeros, and J.-S. Sereni. New progress in enumeration of mixed models. Appl. Math. E-Notes, 5:60-65, 2005.
[9] C. Chaunier and N. Lygeros. The number of orders with thirteen elements. Order, 9(3):203-204, 1992.
[10] C. Chaunier and N. Lygeros. Le nombre de posets à isomorphie près ayant 12 éléments. Theoret. Comput. Sci., 123(1):89-94, 1994. Number theory, combinatorics and applications to computer science (Marseille, 1991).
[11] C. Chaunier and N. Lygeros. Posets minimaux ayant un groupe d'automorphismes d'ordre premier. C. R. Acad. Sci. Paris Sér. I Math., 318(8):695-698, 1994.
[12] S-C. Chung and B-M Choi. H_{v}-groups on the set $\{e, a, b\}$. Italian Journal of Pure and Applied Mathematics, 10:133-140, 2001.
[13] N. Lygeros. Caractérisation de la complexit structurelle. Perfection, 1, 2002.
[14] N. Lygeros. Posets, groups and hypergroups. Perfection, 5, 2004.
[15] N. Lygeros. Sur la notion de groupe d'automorphismes. Perfection, 8, 2004.
[16] N. Lygeros. Sur les hypergroupes rigides. Perfection, 8, 2004.
[17] N. Lygeros. Hypergroupes et groupes d'automorphismes. Perfection, 1, 2005.
[18] N. Lygeros. Les hypergroupes de Marty-Moufang. Perfection, 6, 72005.
[19] N. Lygeros. Sur les hypergroupes de Marty-Moufang d'ordre 2. Perfection, 6, 72005.
[20] N. Lygeros, P.V. Marchand, and M. Massot. Enumeration and 3drepresentation of the stereo-isomers of paraffinic molecules. Journal of Symbolic Computation, 40:1225-1241, 2005.
[21] N. Lygeros and M. Mizony. Construction de posets dont le groupe d'automorphismes est isomorphe à un groupe donné. C. R. Acad. Sci. Paris Sér. I Math., 322(3):203-206, 1996.
[22] F. Marty. Sur une généralisation de la notion de groupe. In 8ème congrès des Mathématiciens Scandinaves, Stockholm, pages 45-49, 1934.
[23] F. Marty. Rôle de la notion d'hypergroupe dans l'étude des groupes non abéliens. C. R. Acad. Sci. Paris Math., 1935.
[24] F. Marty. Sur les groupes et hypergroupes attachés à une fraction rationnelle. Annales scientifiques de l'E.N.S., 53:83-123, 1936.
[25] R. Migliorato. Ipergruppi di cardinalità 3 e isomorfismi di ipergruppoidi commutativi totalmente regolari. Atti Convegno su Ipergruppi, altre Strutture Multivoche e loro applicazioni, Udine, 1985.
[26] R. Moufang. Die Desarguesschen Sätze vom Rang 10. Math. Ann., 108:296-310, 1933.
[27] R. Moufang. Zur Struktur von Alternativkörpern. Math. Ann., 110:416430, 1935.
[28] G. Nordo. An algorithm on number of isomorphism classes of hypergroups of order 3. Italian Journal of Pure and Applied Mathematics, 1995.
[29] Th. Vougiouklis. The fundamental relation in hyperrings: The general hyperfield. pages 203-211, 1991.
[30] Th. Vougiouklis. Hyperstructures and their Representations. Hadronic Press, 1994.
[31] Th. Vougiouklis. A new class of hyperstructures. Journal of combinatorics, information 83 system sciences, 20:229-235, 1995.
[32] Th. Vougiouklis. H_{v}-groups defined on the same set. Discrete Mathematics, 155:259-265, 1996.
[33] Th. Vougiouklis, S. Spartalis, and M. Kessoglides. Weak hyperstructures on small sets. Ratio Mathematica, 12:90-96, 1997.

