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Abstract

The known solutions to the equation τ(p) ≡ 0 (mod p) were p = 2, 3, 5, 7, and 2411.
Here we present our method to compute the next solution, which is p = 7758337633.
There are no other solutions up to 1010.

1 Introduction

Our study of the Ramanujan’s tau function was inspired by the reading of [20]. Lygeros’s
interest in the congruences of the modular function led him to a correspondence [22] with
Serre, in 1988. We identified a few research topics, one of them being the particular congru-
ence τ(p) ≡ 0 (mod p). For some time, the prime integers 2, 3, 5 and 7 were regarded as the
only solutions. Serre wrote us about the solution p = 2411 found by Newman [14] in 1972.
In another letter, Serre exposed the principle of a “log log philosophy”, already introduced
by Atkin. After having consulted the latter, it appeared that the next solution could be of
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the order of 1 billion, if it existed. Several numerical approaches were considered. However,
computers capabilities were still inadequate to reach 1 billion.

Nearly ten years later, Henri Cohen told us about a faster method based on the com-
putation of Hurwitz class numbers [5, 6]. Therefore we wrote two programs: the first one
generated the Hurwitz tables, and the other computed the congruences τ(p) mod p, for suc-
cessive primes p. After several months of numerical investigations on Rozier’s computers,
we found the next solution on March 15 2010 (see A007659 of The On-Line Encyclopedia of
Integer Sequences).

Here we describe the algorithm, derived from the Eichler-Selberg trace formula, and
give some indications on how obtaining an optimized implementation. We also establish a
formula related to the Catalan triangle (A008315) and used to efficiently compute arbitrary
τ(p) values for primes p up to 1010. This was necessary to check the consistency of our
results.

2 Ramanujan’s tau function

The tau function (A000594) is defined as the Fourier coefficients of the modular discriminant

∆(z) = q

+∞
∏

n=1

(1 − qn)24 =
+∞
∑

n=1

τ(n)qn , where q = e2πiz. (1)

It attracted a lot of interest from Indian mathematician Srinivasa Ramanujan. He dis-
covered some arithmetical properties, later proved by Mordell [12]:

τ(nm) = τ(n)τ(m) for n, m relatively prime integers;
τ(pr+1) = τ(p)τ(pr) − p11τ(pr−1) for p prime and r an integer ≥ 1.

It turns out that the value of τ(n) for an integer n can be easily derived from the values
τ(p) for all prime divisors p of n.

Moreover, the tau function has well-known congruences modulo 211, 36, 53, 7, 23 and 691
[2, 17, 21] . For instance, any computed value τ(n) must verify

τ(n) ≡ σ11(n) (mod 691) (2)

where σ11(n) is the sum of the 11-th powers of the divisors of n.
An upper bound, also conjectured by Ramanujan and proved by Deligne in 1974, is given

by
|τ(p)| ≤ 2p

11

2 , for p prime. (3)

The theory of Galois representations attached to modular forms offers deeper understand-
ing of the congruences of Fourier coefficients [19]. In particular, the major achievements of
Serre and Deligne on the subject provide the asymptotic density of primes p such that
τ(p) ≡ 0 (mod l) for a given prime l. Recent advances even establish that τ(p) mod l can be
computed in polynomial time in log(p) and l [7]. Nevertheless, most of the related results do
not apply when l = p, and few are known in that case. The question whether the equation
τ(p) ≡ 0 (mod p) has infinitely many solutions remains open [4, 13]. Such primes p are said
to be not-ordinary for the τ function [8].
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3 The log log philosophy

If we assume that the values τ(p) are randomly distributed modulo p for all primes p, then
we can roughly evaluate the number of non-ordinary primes less than N , as follows:

∑

p∈Π,p≤N

1

p
∼

∫ N

e

dt

t log t
= log log N

Heuristically, this number should grow very slowly to infinity as log log N . This is referred to
as the “log log philosophy” [18, 22]. Furthermore, the probability that the interval

[

10a, 10b
]

,
a ≤ b, contains at least a non-ordinary prime is approximately (b−a)/b. Thus, if we conduct
an exhaustive search between 106 and 1010, the estimated probability of success is only 2/5.

4 Eichler-Selberg trace formula

The modular discriminant ∆ is known to be a cusp form of weight 12, in the upper-half of the
complex plane. The space of such modular forms has dimension 1. Hence ∆ is an eigenform
of the Hecke operators T12(n) applying in this modular space, and τ(n) = TrT12(n) for all
integers n.

Let k ≥ 4 be an even integer. We recall the Eichler-Selberg trace formula in the space of
cusp forms of weight k and level 1 [3]:

TrTk(n) = −1

2

∑

|t|≤2
√

n

Pk(t, n)H(4n − t2) − 1

2

∑

dd′=n

min(d, d′)k−1

where H(n) is the Hurwitz class number of the integer n and Pk is the polynomial in two

variables defined by the equation Pk(t, n) = ρk−1−ρ̄k−1

ρ−ρ̄
with ρ + ρ̄ = t and ρρ̄ = n.

The computation of Eichler-Selberg trace formula is not straightforward, and we would
like an expression that gives the explicit coefficients of Pk(t, n) polynomials.

From previous definition, it follows that ρ = reiθ with r =
√

n, cos θ = t
2
√

n
and

Pk(t, n) = n
k−2

2

sin ((k − 1)θ)

sin θ
.

It becomes obvious that Pk(t, n) is closely related to Chebyshev polynomials Uk of the
second kind and degree k:

Pk(t, n) = n
k−2

2 Uk−2 (cos θ) = n
k−2

2 Uk−2

(

t

2
√

n

)

By applying the general expression [1] of Uk with binomial coefficients, we get

Pk(t, n) =

k

2
−1

∑

i=0

(−1)i

(

k − 2 − i

i

)

nitk−2−2i.
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Now we introduce the Hurwitz sums sj(n) defined by

sj(n) =
1

2

∑

|t|≤2
√

n

tjH(4n − t2).

Thus we obtain

TrTk(n) = −
k

2
−1

∑

i=0

(−1)i

(

k − 2 − i

i

)

nisk−2−2i(n) − 1

2

∑

dd′=n

min(d, d′)k−1. (4)

For k = 12 and p a prime, we get the explicit formula [3]:

τ(p) = −s10(p) + 9ps8(p) − 28p2s6(p) + 35p3s4(p) − 15p4s2(p) + p5s0(p) − 1.

A congruence modulo p can be derived, as follows:

τ(p) ≡ −s10(p) − 1 (mod p). (5)

5 Hurwitz sums and Catalan numbers

For every prime p, it is known [5, 6], since Kronecker, that

s0(p) = p. (6)

Now we consider the linear system composed of equation (6) and trace formulas (4) for
k = 4, 6, 8, 10, 12 and prime p.

The theory of cusp forms asserts that

TrTk(p) =

{

0, if k = 4, 6, 8, 10;

τ(p), if k = 12.
.

This yields a triangular system of six equations and six unknown values sj(p), for j =
0, 2, 4, 6, 8, 10.

















1 0 0 0 0 0
−p 1 0 0 0 0
p2 −3p 1 0 0 0
−p3 6p2 −5p 1 0 0
p4 −10p3 15p2 −7p 1 0
−p5 15p4 −35p3 28p2 −9p 1

































s0(p)
s2(p)
s4(p)
s6(p)
s8(p)
s10(p)

















=

















p
−1
−1
−1
−1

−τ(p) − 1

















This system has determinant 1, and its inverse matrix is

















1 0 0 0 0 0
p 1 0 0 0 0

2p2 3p 1 0 0 0
5p3 9p2 5p 1 0 0
14p4 28p3 20p2 7p 1 0
42p5 90p4 75p3 35p2 9p 1

















.
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In the first column appear the Catalan numbers A000108 Cn = 1

n+1

(

2n
n

)

, which have

generating function c(x) = 1−
√

1−4x
2x

= 1 + x + 2x2 + 5x3 + 14x4 + 42x5 + . . ..
In the remaining columns, the non-zero coefficients are the first terms of the number

sequences Cn(m) = [xn]cm(x), generated by the m-th powers of c(x), for m = 3, 5, 7, 9, 11
(see A000245, A000344). They are given by the general formula Cn(m) = m

m+2n

(

m+2n
n

)

[9, 10].
The sequences Cn(m) are widely referenced in the literature with a great variety of

definitions, notations, and denominations. For instance, this number family also appears in
the Catalan triangle A008315, which may also have other representations (e.g., A009766,
A108786, [1] p796). Moreover, there are several combinatorial results involving Chebyshev
polynomials Uk and Cn(m) numbers, and we only give an inversion formula, following [1, 11,
16]:

n
∑

i=0

Cn−i(2i + 1)U2i(x/2) = x2n.

The resolution of the previous system implies the Hurwitz sums below:

s2(p) = p2 − 1

s4(p) = 2p3 − 3p − 1

s6(p) = 5p4 − 9p2 − 5p − 1

s8(p) = 14p5 − 28p3 − 20p2 − 7p − 1

s10(p) = 42p6 − 90p4 − 75p3 − 35p2 − 9p − 1 − τ(p).

As a consequence of the functional equation c(x) = 1 + xc2(x), the polynomial parts in
p have the common factor (p + 1):

s2(p) = (p + 1)(p − 1)

s4(p) = (p + 1)(2p2 − 2p − 1)

s6(p) = (p + 1)(5p3 − 5p2 − 4p − 1)

s8(p) = (p + 1)(14p4 − 14p3 − 14p2 − 6p − 1)

s10(p) = (p + 1)(42p5 − 42p4 − 48p3 − 27p2 − 8p − 1) − τ(p)

Again, the above coefficients are issued from the number sequences Cn(m) for m =
1, 2, 4, 6, 8, 10 (see A002057, A003517), with a minus sign if m > 1. These are essentially the
same sequences as in Shapiro’s Catalan triangle [23].

We have used the very last equation to compute τ(p) numerically from s10(p). It avoids
the computation of sk(p) for any k < 10, except for verification.

6 Computing Hurwitz tables

The Hurwitz numbers H(n) (see A058305, A058306), for integers n > 0, are closely related
to the class numbers of binary quadratic forms ax2 + bxy + cy2 of negative discriminant −n.
It can be proved [6] that H(n) is equal to the number of integer triplets (a, b, c) determined
by the four conditions

5

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000108
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000245
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000344
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A008315
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A009766
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A108786
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A002057
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A003517
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A058305
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A058306


1. 4ac − b2 = n,

2. |b| ≤ a ≤ c,

3. if a = |b| or a = c, then b ≥ 0,

4. the triplets (a, 0, a) (resp. (a, a, a)) are counted with weight 1/2 (resp. 1/3).

Hence H(n) is a non-negative rational value p/q with denominator q ≤ 3. Moreover, the
first condition implies H(n) = 0 for n ≡ 1 or 2 (mod 4).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
H(n) 0 0 1/3 1/2 0 0 1 1 0 0 1 4/3 0 0 2 3/2

Our algorithm is directly derived from previous properties of H(n), and was written in
the C language. It is indeed straightforward to compute the Hurwitz numbers for all integers
of a given interval together, by generating all the triplets (a, b, c) satisfying conditions 2 and
3, and such that 4ac − b2 falls into the interval. Somehow, this method recalls the sieve of
Eratosthenes.

During and after calculations, it is convenient to store only the integer values 6H(n) for
n ≡ 0 or 3 (mod 4), N1 ≤ n < N2, where N1 and N2 are arbitrary integers. These two
parameters N1 and N2 control the granularity of computations. We suggest adjusting them
in such a manner that the temporary tables in main memory have a smaller size than the
cache memory of the CPU. Since 6H(n) has a value of the order of

√
n, if not zero, we

can use 4-bytes integers to handle those data. Empirically, there exists some optimal value
for the difference N2 − N1, typically between 200000 and 1000000, depending on hardware
specifications. The access time in memory appears to be critical in our case.

As expected, we checked that the computation time of the Hurwitz tables for all integers
in the interval [N ; N + K), for a constant K such that N ≫ K ≫ 1, grows like N1/2,
approximately (Table 1.).

N time
0 0.28 s

106 0.49 s
107 01.27 s
108 03.83 s
109 12.23 s
1010 43.60 s

Table 1: Computation time of Hurwitz tables between N and N + 106

In our study, we generated the Hurwitz tables up to 40 billion, with an overall size of 75
Gb in binary format. This made possible the calculation of τ(p) mod p for primes p < 1010.
We verified the validity of our tables by applying equation (6), for all primes within several
intervals of 106 integers.
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7 Computing the tau function

We computed the values τ(p) mod p, for successive primes p, with another program also
written in the language C that uses formula (5)

τ(p) ≡ −s10(p) − 1 (mod p), where s10(p) =
∑

0<t<2
√

p

t10H(4p − t2).

Since all the Hurwitz tables do not fit in RAM memory, we had to load them dynami-
cally. Obviously, it is recommended to compute many congruences τ(p) mod p at once. We
suggest dividing the Hurwitz tables in arrays that fit in CPU cache memory and perform-
ing calculations on each array sequentially. This optimization improves the efficiency of the
algorithm in case of an exhaustive search.

Similarly, we developed a program that gives the exact τ(p) values with the formula

τ(p) = (p + 1)(42p5 − 42p4 − 48p3 − 27p2 − 8p − 1) − s10(p).

The upper bound (3) provides a fair estimation of the order of τ(p). Thus, we had to handle
numbers with more than 50 digits. It can be achieved with the use of the multiprecision
library PARI.

Clearly, both computation times grow roughly like
√

p, provided that the proportion of
time spent to load Hurwitz tables is small. Practically, it is the case if we compute tau
function for a sufficiently large set of consecutive primes (Table 2). Hence the computation
time for all primes p up to a given integer N evolves like N3/2, approximately.

N time for τ(p) mod p time for τ(p)
0 05 s 10 s

106 08 s 16 s
107 22 s 39 s
108 72 s 112 s
109 306 s 489 s

Table 2: Computation time of τ(p) mod p and τ(p) for all primes p between N and N + 106

First investigations were conducted on a 32-bit computer with a Pentium 4 processor
(2.6 GHz) and 1 Gb of RAM, between August and October, 2009. We generated the values
of τ(p) mod p for primes p < 1.5 · 109. Not surprisingly, we were facing increasing technical
constraints. Then we acquired a 64-bit computer with a Core i7 processor (2.93 GHz) and 6
Gb of RAM, and we installed a Linux operating system. Thanks to the presence of 4 cores
(8 execution units), we could launch up to three processes for the Hurwitz tables and four
processes for the congruences simultaneously.

We generated the congruences modulo p for all primes p below 10 billion. The overall
computation time for the Hurwitz tables and τ(p) mod p values was approximately two
months, on a Core i7 processor. The Hurwitz tables computation represents a third of total
CPU time.
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We also computed the exact τ(p) values for all primes p up to 1 billion, with a CPU time
of about 35 hours, by launching two processes. This does not include the computation time
of the required Hurwitz numbers, which was relatively short anyway. Finally, thousands of
τ(p) values for arbitrary primes p between 109 and 1010 were computed and verified by using
some of the known congruences, and systematically the congruence (2) modulo 691. It was
indeed necessary to check the consistency of τ(p) mod p values using

τ(p) ≡ 1 + p11 (mod 691).

Here we provide a very simple PARI/GP implementation of tau function which takes as
input a prime number.

tau(p) = {

tmax=floor(2*sqrt(p)); s10=0;

for(t=1, tmax, s10+=(t^10)*qfbhclassno(4*p-t*t));

return (p+1)*(42*p^5-42*p^4-48*p^3-27*p^2-8*p-1)-s10;

}

8 Results

Our first significant result was the finding of a new solution to the equation τ(p) ≡ −1 (mod
p) for prime p = 692881373, on September 6 2009. The only other known solution was 5807.

τ(692881373) = −2134035447986554588547794684277099135915023500378
= −2 · 3 · 16183 · 45826933447 · 479590473338104688515299840883663

We checked the congruences modulo 212, 37, 53, 7, 23 and 691.
Our main result is the discovery of a new prime p = 7758337633 such that τ(p) is divisible

by p, on March 15 2010. Indeed we found that
τ(7758337633) = 3634118031125820057253378550628821747860472052772622882

= 2 · 31481 · 7758337633 · 7439638579196209777834920016764711229817.

We checked the congruences modulo 211, 36, 53, 7, 23 and 691. The latter result was an-
nounced on the mailing list NMBRTHRY of North Dakota HECN, and added to the sequence
A007659.

Assuming the correctness of all computations, our study shows that 2, 3, 5, 7, 2411 and
7758337633 are the only prime solutions to the equation τ(p) ≡ 0 (mod p) less than 1010.

Moreover, we give all solutions to the equations τ(p) ≡ q (mod p) where |q| ≤ 100, and
p a prime, 108 < p < 1010 (Table 3).
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p q p q p q p q p q
108306623 64 249317993 47 423822691 28 1052035739 -84 2491075429 14
117138737 -91 254519539 47 459728417 -12 1078801037 -77 3586202561 68
117718969 -40 261550153 56 463203047 80 1155439651 25 3801305863 -26
138395681 -18 315713759 31 658562939 24 1321424171 85 3981602959 -12
138576103 57 316254821 21 663781537 -7 1322068141 -89 5029365641 -94
149929751 -87 322980089 -58 692881373 -1 1433436523 -12 5267222287 -53
153096653 -36 332139911 -15 734238613 -18 1500848449 35 5825117047 -21
165453721 -31 337092443 76 781380671 -95 1818264659 -20 6606460087 -55
196770907 8 340972243 14 825440597 -66 1854155309 55 7076349307 33
217732523 -97 349624213 58 1001976247 54 1932306841 19 7289754107 10
221148401 49 359657993 -42 1044587639 -92 2338478239 93 7758337633 0

Table 3: List of pairs (p, q) verifying τ(p) ≡ q (mod p), |q| ≤ 100, p is prime, 108 < p < 1010

Finally, we recall that the equation τ(p) ≡ 1 (mod p) has known solutions 11, 23 and
691. There are no other solutions up to 1010.
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