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Abstract

We first recall our results on enumeration of hypergroups and H,-groups of order
2, 3 and 4. Then we carry out a study on posets of hypergroups and H,-groups.
These results are extended to hyperrings. We finally explain the algorithms used.
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1 Introduction and Definitions

More than seventy years have gone by since the creation of the concept of
hypergroup by F. Marty in 1934 [21]. However the origin of this creation
remains still unclear due to the mysterious veil which covers a part of the life
of its author. The implicit claims on behalf of M. Krasner and of H.S. Wall,
contribute to maintain some blurring. But their presences prove, even if merely
in a hazy way, the importance of the discovery of the concept of hypergroup,
without sufficing to dispossess F. Marty of the paternity of his creation.
Definition 1 (F. Marty [21, 22, 23]). < H,. > is an hypergroup if (.) :
H x H — p(H) is an associative hyperoperation for which the reproduction
axiom hH = Hh = H is valid for any h of H.

The concept developed by H.S. Wall in 1937 [41] is rather close. We compare
the two concepts so as to identify the crosschecking points and the diverging
points. The concept of hypergroup of H. S. Wall is based on the following four
axioms:

(i) The product postulate: The product of two elements of H is a complex (in
the sense of an assembly) of n elements of H uniquely determined.

(ii) The associative law: If (a, b, ¢) are three elements of H then a(bc) = (ab)c =
abc.
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(iii) The identity postulate: There is at least an element e in H such as for any
element a of H the ae and ea products contain at least both the element a.

(iv) The postulate of the inverse: There is at least an element ¢~ in H such as
for any element a of H the products aa~! and a~'a contain at least both
the element e.

Whereas the concept of hypergroup of F. Marty is based only on two axioms,
i.e. axiom of reproduction and associative law. Thus the associative law is
present in the two concepts. On the other hand the identity postulate and
the inverse postulate, which are interpretable in more modern terms as weak
properties since there is not necessarily equality but nonempty intersection,
are completely absorbed in F. Marty’s hypergroup structure since it has a
meaning even in the absence of the neutral element and at the same time of
the opposite element. So there only remains the postulate of the product to
differenciate the two hypergroup concepts. Indeed the restriction on the three
other axioms of H. S. Wall clearly shows that the generated class is included
in the class generated by the axioms of F. Marty. The postulate of the product
makes it possible to introduce the concept of multiplicity and it is this one
which characterizes the formalism chosen by H. S. Wall. Nevertheless, if the
elements all are different then the H. S. Wall’s class is included again in the
F. Marty’s class. This body of comparisons, even if it cannot be completely
ordered, shows the richness of F. Marty’s definition to create the concept of
hypergroup [19]. In 1991 Th. Vougiouklis generalized the definition of F. Marty
by weakening associativity [33].

Definition 2. An hyperoperation is weakly associative if for any x,y,z € H,

x(yz) N (zy)z # 0.

Definition 3 (Th. Vougiouklis [33]). < H,. > is a H,-group if (.) :
H x H — p(H) is a weakly associative hyperoperation for which the repro-
duction axiom hH = Hh = H is valid for any h of H.

The essential idea which governs the existence of these H,-groups is a weaken-
ing associativity. This weakening simply consists in considering the two terms
of the associative law as sets, since this is possible, and in requiring that their
intersection shall not be empty. Those objects have been studied by Th. Vou-
giouklis [14, 34, 37, 38, 39]. This idea was extended to more general structures,
like the hyperrings and the hyperfields [17, 29, 30].

The H,-groups have a property of which the hypergroups are deprived. This
one is built from the definition of the following partial order.

Definition 4 (Th. Vougiouklis [34]). Let < H,. > and < H,* > two H,-
groups. We say that (.) is less or equal than (), and note <, if and only if
there exists f € Aut(H,*) such that xy C f(x *xy) for any x,y of H.

From this definition we can deduce the following theorem:



Theorem 1 (Th. Vougiouklis [34]). If an hyperoperation is weakly asso-
ciative, then any hyperoperation superior to it and defined on the same set is
weakly associative too.

From this property, we can show the concept of minimality in a natural way.
The minimal H,-group is the one that verifies this property but which does
not contain another defined H,-group on the same set. It is in this manner
that have been found the thirteen minimal H,-groups of order 3 containing a
neutral element, as we will specify it thereafter. In spite of these results it is
obvious that in the field of the enumeration of the hypergroups as well as of
the H,-groups, the exploitation of techniques coming from the enumeration
of much simpler structures, like the partially ordered sets [12, 20] will allow
considerable progress [5, 7, 31]. Indeed, this new approach which concentrates
amongst other things on the automorphisms group contains elements able to
transcend some combinatoric difficulties.

After our works on the hypergroups enumeration [2, 5, 6, 7], we thus concen-
trate on the enumeration of the H,-groups of order 2 and 3 as well as that of
the abelian H,-groups of order 4.

2 The H,-groups of Order 2

All the Th. Vougiouklis contribution concentrates in weak associativity. How-
ever the latter does not respect any more the equality that is preserved even
in such objects as the quaternions, which are regarded as exotic by some. This
replacement of the equality by the nonempty intersection represents a true
innovation because it is a breaking point with the traditional approach that is
however also based on the set theory. Indeed, to study the heart of a primarily
algebraic structure we return to a typically ensemblist idea. Moreover, this
new approach enables us to manage a new property which characterizes the
H,-groups entity: their heredity compared to the addition or deletion of a new
element. This idea, which may seem elementary at first sight and which poses
no difficulty in its demonstration, is the base of all thinking about H,-groups.
This property allows to classify them in a natural way and to put forward
even deeper combinatoric structures. It can also be partially exploited in the
field of hypergroups. But without any doubt, its most innovating character is
in its creativity, that highlights the universal and complete character of this
approach. Thus the H,-groups owe their power and their general information
with the characteristic and the weakness of the associativity which plays a cen-
tral part in this second generalization of the groups. The Th. Vougiouklis idea
on weak associativity, although in line with F. Marty’s idea on reproduction,
remains an innovation because it is in fine unforeseeable in its consequences.
We examine now the concrete structure of these new entities.



Theorem 2. There exists, up to isomorphism, 20 H,-groups of order 2 (see
table 1).

Hygrowp | [Aut(H,)| | Hygrowp | |Aut(H,)]
(a;b;b;a)* 2 (H;a; H;b)* 2
(H;b;b;a) 2 (a; H; H; b)* 1
(a; H; b;a) 2 (H;a;a; H) 2
(a;b; H;a) 2 (H;b;a; H) 1
(H;a;a;b)* 2 (H;a;b; H) 1
(H; H;b;a) 2 (H;H;H;a)* 2
(H;b;Hja) 2 (H;H;H;b)* 2
(a; H; H; a) 2 (H;H;a; H) 2
(b;H; Hja) 1 (H;H;b;H) 2
(H;H;a;b)* 2 (H;H;H;H)* 1

Table 1
List of the H,-groups of order 2 (H = {a,b})

Compared to Th. Vougiouklis [35] we have added the following H,-groups:
(H,b,a,H) and (b, H, H,a) which are rigid (i.e. their automorphisms group is
of order 1).

3 The H,-groups of Order 3

Theorem 3 (S-C. Chung, B-M. Choi [13]). There exists, up to isomor-
phism, 13 minimal H,-groups of order 3 with scalar unit (see table 2).
We give below the list of these H,-groups in reduced form. That is to say, we

consider < H = {e, a,b},. > with scalar unit e and we give the hyperproducts
(aa, ab, ba, bb).



(b,e,e,a)

(eb,a,a,e)
(e,ab,ab,e)
(a,eb, eb,a)

(ab, ea, ea,e)

(H,eb,a,ea)

(H,a,eb,ea)
(a,H,H,e
(b,H,H,e
(a,H,H,b
(H,b,a, H
(H,a,b,H)
(H,e,ab, H)

)
)
)
)

Table 2
List of the minimal H,-groups of order 3 with scalar unit (H = {e,a,b})

Compared to Th. Vougiouklis, S. Spartalis, and M. Kessoglides [40] we have
added the three following H,-groups: (H,e,ab, H), (H,a,b,H), (H,b,a,H).
We prove below their minimality.

Proof. Let us show the minimality of the H,-group given in reduced form:
(H,ab,e, H). Suppose that (H, ab, e, ea) is a minimal H,-group. It verifies the
reproduction axiom, but does not verify weak associativity: b.(a.b) = b.{b,a} =
b.bUb.a={e,a} Ue={e,a} and (b.a).b = e.b = {b}, contradiction.

The demonstration is similar in all other cases. O

S-C. Chung and B-M. Choi have previously discovered these three H,-groups
with a different method.

Theorem 4. There exists, up to isomorphism, 292 H,-groups of order 3 with
scalar unit.

Theorem 5. There exists, up to isomorphism, 6494 minimal H,-groups of
order 3 (see table 3).



Classes
Abelians non Abelians
) non Cyclics ) non Cyclics
Cyclics Cyclics

Proj. non Proj. Proj. non Proj.
1 1 1 - 2 2 -
2 2 1 - 8 2 1

|Aut(H, )|
3 11 2 3 90 8 12
6 102 1 13 5936 47 249
Table 3

Classification of the minimal H,-groups of order 3

Theorem 6. There exists, up to isomorphism, 1.026.462 H,-groups of order
3 (see table 4).

Classes
Abelians non Abelians
) non Cyclics ) non Cyclics
Cyclics Cyclics

Proj. non Proj. Proj. non Proj.
1 5 2 - 4 2 -
2 8 1 1 47 ) 7

|Aut(H,)|
3 243 8 14 2034 66 76
6| 7439 10 195 1003818 | 1083 11394
Table 4

Classification of the H,-groups of order 3

Within the framework of the generalization of the hypergroups in the sense
of F. Marty, Th. Vougiouklis introduced the concept of hyperstructure which
he named H,-structure and which constitutes the generalization of algebraic
hyperstructures like the hypergroups and the hyperrings. A particular case of
this generalization is the very thin hyperstructure.

Definition 5 (L. Konguetsof, Th. Vougiouklis, S. Spartalis [18]). A
H,-group is known as very thin if all its hyperoperations except one are sin-
gletons.

With L. Konguetsof and S. Spartalis, Th. Vougiouklis [18] established the
following proposition.

Proposition 1 (L. Konguetsof, Th. Vougiouklis, S. Spartalis [18]).



Let be (H,.) a finished very thin H,-group of order n > 1. Let a and b be the
only elements of H such that ab = A is of a strictly superior to 1 order.

(i) either for all v de H — {a}; va = a and two cases are to be considered: if
n = 2, then there exists a group law (x) on H, such that a xb € A and
xxy=uxy forallz,y of H—{(a,b)},
ifn >3, thena=0b, H—{a} is a group, A=H or A= H — {A},

(ii) or there exists v of H such that v # a and va # a, then there exists a group
law (x) almost associative on H i.e. associativity is everywhere verified,
except possibly for the triplets of elements where the product a x b is such
that axb € A, and x xy = xy for all x, y of H — {(a,b)}.

So if we wish to characterize the very thin hypergroups it suffices to consider
the first part of the proposition.

For n = 3, with the characterization L. Konguetsof - S. Spartalis - Th. Vou-
giouklis, we obtain two very thin hypergroups:

HF, = (a,b,c,b,ac,b,c,b,a)

and
HF, = (a,b,c,b, H,b,c,b,a)

In addition our results confirm, in an independent way, the result of Th. Vou-
giouklis [36], namely that there exists, at order 3, eight very thin H,-groups
with identity element. Moreover there exists, at order 3, 16 very thin H,-
groups.

4 Abelian H,-groups of Order 4

In a previous note [7] we gave the number of Abelian hypergroups of order 4.
Theorem 7 (R. Bayon-N. Lygeros [7, 4]). There ezists, up to isomor-
phism, 10.614.362 abelian hypergroups of order 4.

We then considered the case of the H,-groups.

In the abelian case we have the following equivalence: x(yz) N (zy)z # 0 <
z(yx)N(zy)x # 0. What authorizes us to decrease the number of computations
to check for weak associativity. As for the hypergroups, there exists at order
4 15'° potential hyperoperations.

Theorem 8 (R. Bayon-N. Lygeros [3, 1]). There ezists, up to isomor-
phism, 8.028.299.905 abelian H,-groups of order J (see table 5).

We specify this result in the following table:



Classes
non Cyclics
Cyclics
Proj.  non Proj.
1 ) 3 -
92 _ , ,
3 38 5 6
4 582 22 39
|Aut(H,)|
6 2.215 45 144
8 2.149 39 144
12 1.859.161 1.827 39.773
24 | 7.994.020.227 | 86.159  32.287.322

Table 5
Classification of the abelian H,-groups of order 4

Theorem 9. There exists, up to isomorphism, 631.609 abelian H,-groups of
order 4 with scalar unit (see table 6).

|Aut(H,)| || 1|23 4 |6] 8 | 12 24

-1 -1-132|-146| 5510 | 626.021

Table 6
Number of abelian H,-groups of order 4 with scalar unit in respect with their
automorphisms group

5 Hypergroups, H,-groups and Posets

After enumerating hypergroups and H,-groups, we construct the associated
posets. We obtain the poset of hypergroups of order 2, the poset of hypergroups
of order 3 and the poset of H,-groups of order 2. R. Fraissé and N. Lygeros
like C. Chaunier and N. Lygeros have enumerated posets [9, 10, 11, 16]. R.
Fraissé and N. Lygeros also have studied representation by circle inclusion for
small posets [16].

5.1 The Hypergroups

After having enumerated the hypergroups of order 2 (see table 1, annotation *),
we obtain the poset of hypergroups of order 2 and its circle order representation



(see figure 1) [6].

. Circle order representation
Hasse diagramm

Fig. 1. Poset of hypergroups of order 2

In a previous article [6], we have studied the maximality of the longuest chain
of posets of hypergroups of order n. A chain having the maximality prop-
erty has a length 1 + (n — 1)n?. Thanks to an argument based on very thin
hypergroups, we prove the following theorem:

Theorem 10 (R. Bayon, N. Lygeros [6]). For n > 3, the mazimal chain
of the poset of the hypergroups has not the maximality property.

We then construct the poset of hypergroups of order 3 (see table 7).

Rank | # HG || Rank | # HG
1 59 9 358

2 168 10 245
3 294 11 160
4 438 12 66
5 568 13 29
6 985 14 10
7 536 15 2
8 480 16 1

Table 7
Characteristics of the poset of hypergroups of order 3

5.2 The H,-groups

The work on poset of hypergroups was extended by the construction of the
poset of H,-groups of order 2 (see figure 2).



\q.' &
Sl

Fig. 2. Poset of H,-groups of order 2

We construct the poset of very thin H,-groups of order 3 too (see figure 3).

AN

Fig. 3. Poset of the very thin H,-groups of order 3

6 Extended Results

6.1 Hypocomplete Hypergroups

Definition 6. An hyperproduct xy of an hypergroup (H,.) is complete if xy =
H.
Definition 7. An hypergroup is hypocomplete when all its hyperoperation ex-

cept one are complete.
Proposition 2. The hyperstructure defined by aa = S # H etV(x,y) € H* #
(a,a) xy = H is an abelian hypocomplete hypergroup.

Proof. & Obviously the hyperstructure is abelian and verifies reproductivity.
e The hyperstructure is associative :
a(aa) = S = (aa)a

O

Theorem 11. The number of abelian hypocomplete hypergroup of order n is
2(n — 1) up to isomorphism.

10



Proof. Let (H,.) be an hypocomplete hypergroup of order n. Let assume that
aa is the noncomplete hyperproduct, and let aa = S et aa = R (generating
hypergroups Hg and Hgr). We have 1 < S <n—-1letl1l < R<n-—11If
|S| # |R| then Hr 2 Hg. If |S| = |R)|, there exist two equivalence classes :

e ifa € Sand a € R then Hr = Hg,
e ifa € Sand a € R then Hr 2 Hg, that is isomorphic to a € S and a € R,
e ifa g Sand a ¢ R then Hr = Hg.

Consequently there exist 2(n — 1) abelian hypocomplete hypergroups. O

Proposition 3. : The hyperstructure defined by ab = S # H et S # {a} ou
S #£ {b}, et V(z,y) € H* # (a,b) xy = H 1is an non-abelian hypocomplete
hypergroup.

Proof. & Obviously the hyperstructure is abelian and verifies reproductivity.
e The hyperstructure is associative :
a(aa) = H = (aa)a, b(bb) = H = (bb)b
x(yz) = xH = H = Hz = (xy)z for z,y,z # a,b; for only one a or b in
x,1, 2 see previous proposition.
a(bz) = aH = H = sz = (ab)z idem for the permutation; a(yb) = aH =
H = Hb = (ay)b idem for the permutation; a(ba) = aH = H = Sa = (ab)a;
a(ab) = aS = H = Hb = (aa)b

O

Remark 1. If ab = a the hyperstructure is not associative : (ab)b = ab = a #
H = aH = a(bb). If ab = b the hyperstructure is not associative : (aa)b =
Hb=H #b=ab=a(ab).

Theorem 12. The number of nonabelian hypocomplete hypergoup of order n
is 4(n — 2) up to isomorphism.

Proof. Similar as theorem 11. O

Theorem 13. The number of hypocomplete hypergroup of order n is 6n — 10.
This theorem is the combination of theorem 11 and 12.

6.2 Rigid Hypergroups and Rigid H,-groups

Definition 8. Let be (.) and (*) two hyperoperations on H we say (*) is dual
of (.) if and only if Va,y € Hx.y = yxx. We note (*)=d(.).

Proposition 4. < H,. > is an hypergroup if and only if < H,d(.) > is an
hypergroup.

Proposition 5. < H,. > is a H,-group if and only if < H,d(.) > is a H,-
group.

11



Proposition 6. If < H,. > is a rigid quasigroup with |H| > 2, there exists
only three possible squares :

e Vxe H xx=ux
o Vx e H zao=H—{z}
eVreH za=H

Proof. 1f there exists x of H such that x € xx then, by transposition, for all
x of H, x belongs to zx.

In the same way, if there exists x of H such that z ¢€ xx then for all x of H,
x does not belong to zz.

If there exists y # x, such that y belongs to zz. Let be z different from z
and y; xx = S Uy and suppose that z does not belong to S. Let be f the
transposition of y and z, then f induces a new labeling of H (zx = S U 2z
because f(S) = 5) : that contradicts the rigidity of H. Consequently if there
exists y different from x with y € zz, then all y different from z belongs to
T ]

Proposition 7. If < H,. > is a rigid quasigroup with |H| > 2, there ezists
only seven possible cross products :

(i) Ve,y € H (x #y), zy =x
(it) Ve,y € H (x #y), vy =y
(ii) Yo,y € H (v #y), xy = H — {x}
(iv) Yo,y € H (z #y), vy = H — {y}
(v) Yo,y € H (v #y), vy = H — {z,y}
(vi) Yo,y € H (z #y), vy = {z,y}
(z # y)

(vii) Vx,y € H oy =H

Proof. Suppose there exists (z,y) € H? with x # y and x € zy. Let z in H
and f be the transposition of x and z, then z is in zy because of definition 6.
This time, let be f the transposition of z and y, then z is in xz. So if there
exists a (z,y) in H? (with = # y) such that z € zy then for all (z,y) in H?
(with « # y), x belongs to xy. In the same way we show the following results

e if there exists a (z,y) in H? (with x # y) such that y € zy then for all (z, y)
in H? (with = # y), y belongs to zy.

o if there exists a (z,y) in H? (with  # y) such that x ¢ zy then for all (z,y)
in H? (with = # ), x does not belong to zy.

e if there exists a (z,y) in H? (with x # y) such that y & zy then for all (z,y)
in H? (with = # ), y does not belong to zy.

12



Let o € H with a # x and a # y, so by rigidity « is in zy (using the trans-
position of o and z). So H — {z,y} € xy and, by combination of proposition
1 and previous result, this implies that if there exists a (z,y,2) in H? with
x # vy, x # zand y # z such that z € xy then Va,y H — {z,y} C xy.

The combination of the five previous results proves the current proposition.
O

We then lead an exhaustive study of the existence of the rigid hypergroups
and H,-groups. We summarize our results in table 8.

X.y
X.X x y |H—{a} | H-{y} | H—{z,y} | {z,y} | H
x - - Hin d(Hy1) @1 Hy | Hy
H-{z}| - | - i i i Hy | H,
H Hyp | d(Hy2) | Hy d(Hy3) Hyy Hs | Hg

Table 8
The 14 rigid Quasigroups.

Proposition 8. H,, Hy, H3, Hy, H5 and Hg are hypergroups.

Proposition 9. H,;, d(H,;) (fori € [1,4]) are H,-groups.

Proposition 10. )1 is a quasigroup at order 8 and a H,-group at order
greater than 3.

7 Hyperrings

Definition 9 (Th. Vougiouklis [32]). (R, +,.) An hyperstructure is called
an hyperring if (R,+) is an hypergroup, (R,.) is a semigroup and (.) is dis-
tributive in respect to (+).

Definition 10 (S. Spartalis, A.Dramalides and Th. Vougiouklis [28]).
(R, +,.) An hyperstructure is called an H,-ring if (R, +) is an H,-group, (R,.)
is a weak semigroup and (.) is weakly distributive in respect to (+).

A. Dramalidis enumerated a restricted class of H,-rings, the dual H,-rings.
Definition 11 (A.Dramalidis [15]). An H,-ring (R, +,.) is dual if (R, ., +)
15 an H,-ring.

He classified all H,-ring such that R = {0,1,a} where 0 is the scalar unit
of H,-group (R, +) and absorbing element of semi-hypergroup (H,.) and 1 is
the scalar unit of semi-hypergroup (H,.). In the same way, he classified all
hyperannoids, where (.) is not distributive in respect to (+). He needed to
avoid a maximum of computations because they where done case by case. So
he tried to minimize the role of associativity because of its high computational
cost and use the symetry of duality.

13



We enumerate hyperrings and H,-rings of small orders and this will probably
improve our understanding of the hyperannoids [8]. Indeed, certain categories
of hypergroups were studied because of their low computational cost, but they
were useless for the understanding of hyperstructures. Our research [6] already
showed the greater importance of cyclic and single-power hypergroups than
the canonical hypergroups [25, 26].

From an historical point of view, M. Krasner has introduced the notion of
hyperring in 1966, ten years after the notion of hyperfield. So the hyperring in
M. Krasner’s sense generalizes his notion of hyperfield. This one was consid-
ered as the natural extension of F. Marty’s hypergroups. But this extension is
not as natural as it seems. In order to avoid technical problems, M. Krasner
used ad hoc properties which were studied by its disciple J. Mittas. J. Mittas
introduced canonical hypergroups which are, in short, a restriction of hyper-
ring and consequently of hyperfield in Krasner’s sense. This global schema
seemed complete and closed, in fact no. The radically different approach of
Th. Vougiouklis showed this critical point. Th. Vougiouklis started his work
by weakening associativity in the hypergroup of F. Marty. It was then easy to
extend this notion to hyperring and to hyperfield in a natural way. Moreover,
this approach generalizes Krasner’s and Rota’s approaches. Th. Vougiouklis
does not work in a specific case as canonical hypergroups. His approach is
based on hypergroup in Marty’s sense and moreover he introduces H,-groups.
He avoid the pitfall of representativity in the world of hypergroups. Indeed
in our research, we show the low importance of canonical hypergroups in the
set of hypergroups. From this observation, we easily deduce that M. Krasner’s
generalization on hyperring and hyperfield are analoguous in the correspond-
ing world. So the generalization of Th. Vougiouklis embraces the whole set
of hyperstructures. A natural approach to hyperrings is to construct them
from their underlying hyperstructures. With this manner, we can easily check
intermediate results. Consequently, we use the enumeration of hypergroups,
semi-hypergroups, H,-groups and S,-groups (which are analogue of H,-groups
for semi-hypergroups).

Proposition 11 (R. Bayon - N. Lygeros). Let (R,+,.) be an hyperring
then Aut(R) = Aut(+) U Aut(.).

Corollary 1 (R. Bayon - N. Lygeros). Let (R,+,.) be an hyperring then
|Aut(R)| > max(|Aut(+)], |Aut(.)]).

Theorem 14 (R. Bayon - N. Lygeros). There are 63 isomorphism classes
of hyperrings of order 2 (see table 4).

Classes
1 6
|Aut(R)|
2 114

Table 9
Classification of Hyperrings of Order 2
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Theorem 15 (R. Bayon - N. Lygeros). There are 875 isomorphism classes
of Hy-rings of order 2 (see table 5).

Classes
1 33
|Aut(R)|
2 1684

Table 10
Classification of H,-rings of Order 2

Theorem 16 (R. Bayon - N. Lygeros). There are 35.277.642 isomorphism
classes of hyperrings of order 3 (see table 6).

Classes
1 31
2 506
|Aut(R)|
3 67.857
6 | 199.528.434

Table 11
Classification of Hyperrings of Order 3

This global approach generalize the partial results obtained by Th. Vougiouklis
and A. Dramalidis [15, 34].

8 Algorithm

8.1 Algorithm Structure

8.1.1 Generation of Hyperstructures and Partitioning.

We generate the hyperstructures candidates by counting in base n! — 1. This
counter enumerates all numbers with n? digits. During this generation, we
prune candidates by verifying the axiom of reproduction. If the reproduction
axiom is verified, we test the weak associativity. If the candidate has these
two properties, it is a hyperstructure. We then determine its partition. We
partition the hyperstructures in respect with the number of hyperproducts
of a given order. The resulting partitioning is thin and uniform. With this
partitioning we construct efficiently the poset of hyperstructures [6].

15



8.1.2 Isomorphism Test

Definition 12. Two hyperstructures < H,. > and < H,* > are isomorphic
if there exists f € Aut(H,*) such that V(z,y) € H?> vy = f(x *y).

It is sufficient to pre-compute S, and to verify for each couple of H,-groups
(< H,. >,< H,* >) if there exists f € 5, such that f(< H,x >) =<
H,. >. In order to simplify the enumeration of hyperstructures, we only test
isomorphism between hyperstructures of the same partition. We obtain the
set of non isomorphic hyperstructures and the order of their automorphisms

group.

8.1.3 Validation

With this algorithm we get the result of R. Migliorato [24], who computes the
23192 hypergroups of order 3, and the result of G. Nordo who [27] computes
the 3999 non-isomorphic hypergroups of order 3.

8.1.4  An Enumeration Algorithm

Our previous algorithm is similar to G. Nordo’s one, but our partitioning
allows us to eliminate useless isomorphism tests. It is necessary in order to
construct posets of hyperstructures, because we need to know all isomorphisms
between hyperstructures. However we have developed a new algorithm for enu-
merative results. We generate all the hyperstructures, and for each of them
we compute the order of its automorphisms group. The number of hyperstruc-
tures, up to isomorphism, p is:

where n is the order of the hyperstructures, and s; is the number of hyper-
structures having an automorphisms group of order ¢. With this algorithm we
get result at order 4.

8.1.5 Hyperrings

We generate all the simple hyperstructures (hypergroups, semigroups, H,-
groups,... ) and for each of them we compute the order of its automorphisms
group. We check distributivity for each valid pair of hyperstructures. If the
hyperringoid verifies distributivity, we compute and we store the order of their
automorphisms group. As all paires have been checked, we determine the num-
ber of hyperrings, up to isomorphism.
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