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Abstract: Microkinetic modelling of large reaction networks usually necessits the generation of molecules and the 

computation of some their physical properties and especially their symmetries. The graph theory is an interesting 

tool for achieving these goals and yields new insights to these problems providing both certificate, via generating 

function, and ways to easily generate molecules and properties. Results presented here are based on alkanes 

(paraffins) but can be extended to other types of molecules. 
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1 Introduction 

Kinetic modeling of reactions involving complex mixtures of long-chain hydrocarbons can now be based on 

computer calculations using concepts of molecular chemistry. One of these approaches  

is the “single event theory” 1,2,3. The method assumes that the kinetic constants of the elementary steps can be 

estimated on the basis of intrinsic properties (nature of the active center, contribution of the atoms or groups 

that compose the molecule, etc.) and of characteristics of the symmetry of the reactant, product or activated 

complex. Alternative methods exist that takes into account Statistical Factors instead of Symmetries 4 . 

Statistical Factors counts  the number of different possible products, by labeling all the identical atoms. Bishop 

and Laidler established the equivalence between Symmetries and Statistical Factors 5 , as the ratio between 

forward and backward reactions are the same with both descriptions. 

Chemical acid catalysed reactions usually involves paraffins, olefins ions and activated complex 31. For a 

sake of simplicity , we will limit the present study to paraffins, but the approach hereafter can be extended to 

other families of molecules. 

Since we intend to bring a new approach in the evaluation of these characteristics for a class of paraffin 

molecules, an interesting tool to this purpose is graph theory. A correspondence between graphs and chemical 

categories has found numerous applications in chemistry: a graph corresponds to a molecule, i.e. points 

symbolize atoms and lines symbolize chemical bonds. Graphs gave Cayley the incentive to develop a procedure 

for counting the structural isomers of alkanes as early as in 1874 6. In the framework of acyclic alkane molecules, 

hereafter denoted paraffins, there is a one-to-one correspondence between the various isomers of the molecule 

where only carbon atoms and C-C bonds are represented (the lacking atoms being hydrogen) and mathematical 

graphs. Each bound between two carbon atoms, the vertices, is represented as a line relating two points; thus 

every structural formula of paraffin is a graph whose points have at most degree 4 and every structural formula 

of paraffin is a tree with the same property (see Figure 2 and reference 7). 

Figure 1 illustrates a typical example, although simplified, of the problematic that motivates this article. 

Excluding the S3 symmetry axes of the three rotating methyl groups, reactants A and C have an “internal” 

symmetry of order two. Conversely, product B has an S2 axis of “external” symmetry and product D contains a 

chiral carbon (star). According to rules of  the single event theory, the rate constants are those of the Figure 1 

where k is proportional to the single event rate constant. 
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FIG. 1 – Elementary step rate constants according to the symmetry of the reactant and product 
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For both reactions, the forward rate constants are the same because the formation of the 

activated complexes is assumed to be independent of the length of the linear chain (in A or C). 

Conversely, the backward rate constants depend on the symmetry of B or D. At equilibrium, the composition of 

the mixture of C and D (both stereo-isomers) can be obtained from the group 

contribution method of Benson 8. The enthalpies of formation of C and D are identical whereas 

the entropies are related by S0 (C) = S0 (D) – RLn(2) because of the chiral carbon atom and of 

the “internal” symmetry. As a result the ratio of D to C at equilibrium is 2, in agreement with the 

equality of the forward and backward step rates. The same reasoning can be applied to the second 

reaction with S0(A) = S0 (B) because of the “external” symmetry of B. 

For molecules more complex than those of figure 1, one must calculate a symmetry number σ.  

Because a given paraffin molecule can have identical lateral branches and symmetries, its graph is 

left invariant by a set of permutations of vertices of the graph which leave the relation between 

these vertices unchanged. In the mathematical playground, this set of transformations is called  

the automorphism group of the graph. It purely represents the degree of symmetry of a structural 

isomer of the molecule and does not bring any information about its spatial configuration. One has 

then to be careful when using the representation of Figure 1 that there is no 2D structure left in 

the underlying use of 120 degree angles. 

It is justified to claim that the enumeration of structural isomers and their symmetries has 

received a satisfactory answer 9. Usually, the number of symmetries is decomposed into the 

internal and external symmetries, a decomposition which is only intrinsic through the product 

which corresponds to the order of the associated automorphism group. 

It is not the case as far as stereo-isomers are concerned. Actually, when optical activity is taken into account, 

the enumeration and the evaluation of the symmetry numbers are only usually performed approximately. For 

instance, when steric hindrance is excluded, Benson proposed: 

                                                                         
3

2

M

graph

N


                                                                                     (1) 

 

where σgraph is the number of indistinguishable configurations due to internal and external symmetries when 

chirality is ignored, N is the number of chiral carbon atoms and M is the number of terminal methyl groups. 

Benson’s formula implicitly assumes that the number of stereo-isomers is 2N. Figure 2 illustrates 3,4 

dimethyl-hexane which is a simple counter-example. 

   When 3D representation of the molecule is required, such as in this case, we embed the paraffin molecules 

in a centered network of non-regular octahedral paving the three-dimensional Euclidean space 7 . 

Subsequently, we consider the equivalence class up to discrete carbon-carbon rotations which is supported by 

the network and consider a natural representative of this class obtained by placing the longest chain in a plan 

by locating the position of the possible branches up and down with respect to this plan (see Figure 2).   
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FIG. 2 – Stereo-isomers of 3,4 dimethyl-hexane 

 This alkane molecule contains two chiral carbon atoms so that the “usual” number of stereo-isomers is 

given to be 2N = 4. However, as represented in Figure 2, two of the four three-dimensional configurations are 

isomorphic (meso form) since the chirality interferes with the global symmetry of  

the molecule. Consequently only three stereo-isomers are to be enumerated! Besides, the symmetry properties of 

the three-isomers considered as objects in the three-dimensional Euclidean  

oriented space, will not be identical and will then differ from the original symmetry number associated to the 

graph of the molecule. It becomes then clear that, first the number of stereo-isomers  

as well as their symmetry properties are not simply provided by the number of chiral carbon atoms 

and the order of the automorphism group of the graph associated to the molecule when chirality 

and symmetry interferes; and second, the symmetry properties in such a case have to be evaluated  

in the 3D oriented Euclidean space. 

 The systematic enumeration of stereo-isomers and their degree of symmetry appears as a necessary 

investigation in order to exactly evaluate thermodynamical and kinetic properties. Since it  

is not possible to tackle the problem in its full generality, we will concentrate on a generic class of  

paraffins. In many practical applications ranging from chemical engineering, thermodynamics, up 

to combustion problems such as Massot and co-workers 10,11 , the branching complexity of the paraffins remains 

limited. 

As a consequence, we restrict ourselves, in this paper, to paraffins being constituted of a main  

linear chain, on which only methyl (-CH3) and ethyl (-C2H5) radicals can be connected; in the 

following this condition will be denoted Froment's condition 1, and the corresponding molecules 

will be denoted paraffins under Froment's condition (paraffins UFC). Let us mention that estimating the 

symmetry number of a paraffin is sufficient for calculating its thermodynamical properties 

using Benson’s method. Conversely, it is not sufficient for calculating the kinetic rate constant of 

an elementary step because the latter involves the symmetry number of the intermediate activated 

complex that does not satisfy Froment's condition. However, the tools developed in this study can  

be extended in order to tackle the case of the activated complexes even if this is out of the scope 

of the present paper. 

 The purpose of the paper is then to present a way to obtain exactly the number and symmetry 

properties of stereo-isomers of paraffins UFC and to show how the global symmetry of molecules can 

interfere with chirality. We use the denomination “global symmetry” since for the paraffins UFC  

with a longest chain of at least 6 carbon atoms, if we exclude the internal symmetries associated to 

the free CH3 radicals, the other internal symmetries can only take place at the extremities of the 
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molecule as presented in Figure 3-(a). In such a case, there exists a unique decomposition of the  

automorphism group into the internal symmetries S2 and/or S3, corresponding to the four cases 

presented in Figure 3-(a), and the external symmetry which can only be S2 so that we have: 

                                                                              intgraph glob                                                                                         (2) 

It is worth noticing the degenerated situations presented in Figure 3-(b), that are generic of what 

can be encountered for general paraffins not UFC. In such a case, it is for example impossible 

to decide, except by a conventional choice if the S3 symmetry is internal or external since considered as an external 

symmetry, it leave the other branches invariant. Consequently, except for 

some degenerated situations, the “global symmetry” will precisely denote the S2 symmetry of the 

automorphism group associated to the longest chain of the paraffin UFC (for the graph representation of the 

molecules). 

 

 

FIG 3 – Possible internal symmetry for paraffins UFC (a), and degenerated situations (b) 

 

 The natural mathematical starting point for the enumeration process in the context of graphs, 

where we want to take into account their possible symmetry, is the theory of generating functions 

introduced by Pòlya. It was later extended by Read in a very nice way in order to enumerate the isomers and 

stereo-isomers of various molecules 12,13,14 . The first part of the paper is then devoted to the application of Read’s 

theory in the framework of paraffins UFC. 

 However, this mathematical tool provides the number of structural and stereo-isomers in an  

implicit manner but does not explicitly yield their symmetry properties. The only way to obtain  

the numbers we need for the applications is to go through an exhaustive generation of the various  

topological structures and to calculate from there the associated stereo-isomer numbers with their 

group of symmetry. To this purpose, we present the coding of the paraffins UFC in a computer 

algebra code as well as the associated generation algorithms. It is checked that the resulting global 

numbers of isomers match the results obtained by the generating function theory which then offer 

a nice certificate. From the exhaustive generation, we can get a number of recurrence properties 

from which the information we need can be extracted up to an arbitrary number of carbon atoms 
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since the exhaustive generation is only easily tractable up to 23 carbon atoms as opposed to the 

generating function approach presented in the first part 7 . 

 In the third part, we show the ratio of the number of symmetries of the molecule to 

the number of stereo-isomers (Benson’s formula 1) is valid only when chirality and the group of 

symmetry of the molecule do not interfere. We describe, using arguments from statistical physics 

related to the mixing entropy, how the entropy of formation given by Benson 8  has to be modified in some 

situations in order to take into account this interference. 

 As a conclusion, we finally explain how the result obtained in the present paper can be gene- 

realized and can bring exact evaluation of chirality properties in the framework of results obtained 

by Muller, Scacchi and Come on structural isomers 9. 

2 Generating functions: the certificate 

In this section we enumerate the structural isomers of paraffins UFC as well as their degree 

of symmetry (in the sense of graphs which means without any spatial representation) using the generating 

function concept. We then deduce the enumeration and symmetries of stereo-isomers 

defined by the distinguishable three-dimensional structures owing to the tetrahedral organization around carbon 

atoms 7. 

The automorphism group is at the heart of the strategy introduced by Pòlya and extended by  

Read 7,12-16. This strategy makes the link between the enumeration problem and 

the automorphism group of the graph associated to the molecule. Making use of Read’s study 14, 

we state the following theorem and provide only the sketch of the proof, the comprehensive proof 

being given in the Appendix.  

Theorem. – The number of structural isomers of paraffin molecules with n carbon atoms under 

Froment's condition is given the coefficient of xn in 

2

( ) ( ) ( ) 1 1 ( )
( );

1 ( ) 2 1 ( ) 1 ( )

neq eq

i i
i

S x b x S x b x
P x

b x b x b x

 
   

   
 

 Where 

2 3 4 5( ) 2b x x x x x x      

5 2(1 )neq

iS x x x    

4 2 4(1 )eq

iS x x x    

and 2 3 4 5 6 7( ) 2iP x x x x x x x x        

-The number of stereo-isomers of paraffin molecules with n carbon atoms under Froment's condition is given by 

the coefficient of 
nx   in  

2 2 2

( ) ( ) 1 1
( )

1 ( ) 2 1 ( ) 1 ( )

neq eq

s s
s

S x S x
P x

xc x xc x xc x

 
   

   
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where 
2( ) 1c x x x    

             7 2 3 4 5 6 7 8 9 10(3 8 21 34 50 52 49 32 18 7 2 )neq

sS x x x x x x x x x x x            

            6 2 4 6 8 10 12(1 3 5 6 6 2 )eq

sS x x x x x x x        

and  2 3 4 5 6 7 8 9 10 11( ) 2 3 4 7 8 9 7 6sP x x x x x x x x x x x x            

 

Sketch of the Proof : 

 We start by considering the problem of counting structural isomers. In the following, the skeleton 

of a paraffin UFC will denote two radicals X and Y joined by a chain of carbon atoms. Thus, these 

 paraffin molecules will be composed by a skeleton on which radicals are connected. For the purpose 

of counting structural isomers, X and Y will take their value in the set F, whereas they will take 

their value in an other set, denoted F
8
, for the purpose of counting stereo-isomers in the second  

part of the proof. In Figure 4-(a), X, Y are in F, Qi and Ri are radicals such that: 

F = {-C2H5, -CH(-CH3)2, -C (-CH3)3 },   Qi, Ri  ∈ {-H, -CH3, -C2H5}. 

 This extension of the concept of main chain will then be coherent with Read’s method and 

allows us to control isomorphism phenomena at extremities. Furthermore, the similarity between 

the structure of paraffins UFC and the structure of di-substituted hydrocarbons (CnH2nXY), enumerated by Read, is 

obvious. 

 Let us first suppose that X and Y are different. Consider any pair of ‘boxes’ Qi and Ri. Since 

we are counting structural isomers as presented in Figure 4-(a), we can permute these radicals 

independently from the others, and it follows that the group of permutation is S2  x S2 x… x S2 

with p factors. We then make use of Pòlya’s Theorem, generate the counting series and take into 
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FIG. 4 – Representation of paraffins UFC 

account the extra carbon atoms added to the skeleton through X and Y by multiplying by the 

‘shift’ polynomial, Si
neq, related to the number of added carbon atoms in the extremities. All the 

possible configurations of the two extremities have to be determined and are given in details in the 

Appendix.  

 When X and Y are the same, the skeleton admits a supplementary global symmetry. If p = 2k 

is even then, the group of permutations is now S2 x S2 [S2 x … x S2] (k factors). We then use the same kind 

of argument. The details of the obtained counting series are given in the Appendix. 

 The last step to explicitly express the counting polynomial Pi (x) which enumerates paraffins 

for small values of n, n up to 7, which cannot be obtained by the previous method because of the  

structures of F and consequently of the skeleton. Thus, the counting series of structural isomers of 

paraffins UFC is obtained by summing the counting series and Pi (x). 

 To enumerate the paraffins, having regard to stereo-isomers, we use the same method as before. 

Taking into account the chirality, we have to consider a 3D representation as illustrated in Figure 

4-(b). However a new difficulty arises. Actually, the set of extremities cannot be taken to be F any  

more because of the possible chirality of the third carbon starting from one end of the main chain, 

which will depend on the branches R1 and Q1. In order to avoid these interferences, the length  

of the main chain involved in the extremities has to be 3 carbon atoms. Here is, for example, the  

possibilities when X or Y have 6 carbon atoms: 

 

Alkyl radicals with 6 carbon atoms. (star denote the chiral character of a carbon atom). 

If X and Y are different, the group is E2p (identity group). Therefore, the counting series are 

given by Pòlya’s theorem and we now have to take into account the extra carbon atoms in X and 

Y. There are many possible combinations; they are given in Table V of the Appendix which allow 

to determine the “shift” polynomial, S8
neq. If X and Y are the same, the group is S2[Ep]. As in 

the case X ≠ Y, we provide the numbers of possibilities for the extremity with table VI in the 

Apendix. We deduce the “shift” polynomial, S8
eq. Finally, the counting polynomial P8(x) is the 

analogous of Pi (x) as far as stereo-isomers are concerned.   

The configuration counting series which gives us the number of stereo-isomers of paraffins UFC 

is finally obtained on summing the counting series and P8(x). 

The computer algebra of Maple allows finding very quickly the coefficient of xn for large 

values of n. As an example, the coefficient of x50 in the counting series of stereo-isomers is given 
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by 598 411 199 178 385 732. The numbers of structural isomers and stereo-isomers of paraffins UFC and paraffins 

after Read 14 are tabulated in Table I.  

 isomers stereo-isomers 

n paraffins UFC paraffins  % paraffins UFC paraffins % 

1 1 1 100 1 1 100 

2 1 1 100 1 1 100 

3 1 1 100 1 1 100 

4 2 2 100 2 2 100 

5 3 5 100 3 3 100 

6 5 5 100 5 5 100 

7 9 9 100 11 11 100 

8 18 18 100 24 24 100 

9 35 35 100 55 55 100 

10 71 75 94.7 132 136 97.1 

11 143 159 89.9 321 345 93.0 

12 295 355 83.1 780 900 86.7 

13 606 802 75.6 1 915 2412 79.4 

14 1261 1858 67 .9 4 705 6563 71.7 

15 2616 4347 60.2 11 567 18127 63.8 

16 5461 10359 52.7 28 468 50 699 56.2 

17 11 385 24 894 45.7 70 108 143 255 48.9 

18 23 806 60 523 39.3 172 721 408 429 42.3 

19 49 748 148 284 33.6 425 631 1 173 770 36.3 

20 104 109 366 319 28.4 1 049 038 3 396 844 30.9 

21 217 808 910 726 23.9 2 585 793 9 892 302 26.1 

22 455 993 2 278 658 20.0 6 374 186 28 972 302 22.0 

23 954 512 5 731 580 16.6 15 713 531 85 289 390 18.4 

24 1 998 699 14 490 245 13.8 38 737 748 252 260 276 15.4 

25 4 184 892 36 797 588 11.4 95 499 763 749 329 719 12.7 

30 168 559 829 4 111 846 763 4.1 8 697 332 533 182 896 187 256 4.8 

40 273 611 306 905 62 481 801 147 341 0.4 72 142 591 078 702 13 180 446 189 326 135 0.6 
 

 

Table I: Numbers of structural isomers and stereo-isomers of paraffins. 

Figure 5 illustrates the percentage of paraffins UFC among the set of any paraffins with n 
carbon atoms obtained from Read 14. It is shown to decrease exponentially at infinity and it 

quickly reaches low values even for moderate n. n = 30 can be considered to be relevant of industrial 

hydrocracking operations. Figure 5 shows that kinetic modeling of the hydrocracking process under 

Froment's condition deal with about 4% of the whole set of paraffins that can be involved. The 

trees satisfying Froment's condition then asymptotically represent only a family of zero density as 

the whole of the paraffin molecules which decrease exponentially at infinity. Valery 3 studied 

experimentally the hydrocracking of n-hexadecane, mixtures of long-chain normal paraffins (n = 

20 to 30) and a squalane (2,6,10,15,19,23-hexamethyltetracosane). He found some discrepancies 
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between experimental and simulation results for the higher molecular weights and especially with 

squalane that is a branched reactant. This could be attributed to the restricted framework of 

Froment's condition, besides the challenge of analyzing a mixture of numerous isomers. Finally, 

Figure 5 illustrates the percentage in number; using Benson’s method, it would be nice to obtain 

the percentage in weight at chemical equilibrium even if this is out of the scope of this paper. 

We next focus on the explicit and exhaustive generation of the structures enumerated in this 

section, and further evaluate their degree of symmetry and geometrical properties. 

 

 

 

 

FIG.  5 – Proportion of paraffins UFC; continuous: stereo-isomers; dotted: structural isomers. 
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3 Explicit generation  

The approach used by Read revealed itself as a breakthrough in the field; however, it is implicit 

in the sense that it only yields one global numerical information. Some more information is needed 

for evaluating the thermodynamical and kinetic properties of paraffins UFC. We propose a new  

approach which is explicit and granular, and thus fundamentally different from the preceding one; it 

is rendered possible by the developments of the power of computer algebra 7,17-19. The 

 granular character of the approach means that we may generate sub-classes of paraffins UFC thus 

avoiding partially the explosive character of the generation. 

The base of our strategy is to embed the paraffin molecules in a centered network of non-regular 

octahedra paving the three-dimensional Euclidean space. This network allows an easy coding of 

the molecule as well as an effective isomorphism test through discrete rotations associated to 

the network. The generation consists of three successive steps.  We first of all generate structural 

isomers and classify them in families according to their topological properties (number and type 

of branches on the main linear chain); each family is then partitioned into subfamilies based on 

the automorphism group associated to the molecule (symmetry property of the graph – no spatial 

information). Finally we rigidify the obtained structures, place them in the centered network of 

non-regular octahedra and generate the whole set of stereo-isomers thanks to the exhaustive study 

of chirality 7. 

3.1 Fundamentals of the coding-structural isomers 

The selected coding consists of encased lists. This type of object allows a fast access to the data 

with Maple. The coding only has three operands on the first level as far as the first two steps of 

the enumeration are concerned: 

t, size of the principal chain (the number of vertices);  

 [m1, m2…,mp], the list of the ranks of the connected methyls; 

 [e1, e2…, eq], the list of the ranks of the connected ethyls. 

 

 

FIG. 6 – Two non isomorphic configuration of C10H22 

3.2 The Weight of a coding 
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A significant question, leading to an orientation in the programming, was to know how to avoid 

generating  a too great number of molecules. Indeed, as we want to enumerate non isomorphic confi- 

gurations, the two graphs of Figure 7, for example, will have to be regarded as two representations 

of the same molecule. A way of generating only one of these two configurations is to introduce a 

function weight. The weight of a coding will be defined by the function 

1 2 1 2

1 1

:[ ,[ , ,..., ],[ , ,..., ]] 2
p q

p q i j

i j

f t m m m e e e m e
 

    

This function calculates a certain barycenter on the connections (a weight of 1 is allocated to 

methyls and a weight of 2 with ethyls). The program begins and ‘sets’ the connections on the left 

of the chain. In this way, it avoids counting twice the same molecule, i.e. the identical molecules 

according to whether one reads them starting from the right-hand side or from the left-hand side. 

 

FIG. 7 – Two isomorphic configurations with different weights 

 This weight function coupled to the coding allows us to generate very efficiently the structural 

isomers. Once this generation is performed, we are ready to deal with the three-dimensional nature 

of the molecules and the chirality effects. 

3.3 The 3D-coding – Stereo-isomers 

 

The molecules are embedded in the 3D network of non-regular centered octahedra and we consi- 

der the equivalence class up to discrete carbon-carbon rotations; it is supported by the network. 

A natural representative of this class, because of the Froment’s condition, is obtained by choosing 

a molecule the longest chain of which lies in a plane and by locating the position of the possible 

branches by “U” for up and “D” for down with respect to this plan. It is valid since, if one takes 

into account thermal agitation, the molecules undergo rotations around any carbon-carbon axis. 

Among all space conformations of a given molecule, one will retain that whose main chain is planar 

(see Figure 8). The geometrical representations of the molecules will be thus in three dimensions 

in order to account for chirality. 
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FIG. 8 – One graph, two stereo-isomers 

 

Thus the spatial configuration of the molecule is coded in a canonical way. 

      t, size of the principal chain (number of vertices); 

      1 2[ , ,..., ]pm m m , list of ranks of the connected methyl radicals; 

      1 2[ , ,..., ]m m m

p   , list of position of methyl radicals, where 
m

i  belongs to the set {U, D}. It is  

      chosen according to whether the i-th methyl branch is above the plan of the principal chain  

      or below  

     [e1, e2…, eq], list of ranks of the connected ethyl radicals. 

      1 2[ , ,..., ]e e e

q   list of position of ethyl radicals, where  ,e

i U D   

The Figure 9 shows two examples of the coding. 
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FIG. 9 – Example of 3D codings 

The detection of chiral atoms and isomorphy are done through simple tests on the introduced 

3D coding, thus rendering the approach very efficient. 

3.4 Exhaustive generation 

 

The enumeration procedure encounters a combinatorics explosion as predicted by the theory of generating 

functions. Consequently, the global generation and storage of all configurations rapidly becomes computationally 

expensive and requires a lot of memory storage. 

 

 To avoid this problem, we take profit of the granular character of the approach. It consists in solving sub-

problems defined by supplementary constraints. For instance, we may study the set,  

Gp,q (n), of paraffins UFC with n carbon atoms, p methyl and q ethyl side chains, n, p and q being 

fixed and setting the topology of the molecule. Let us notice that this type of set is used in the 

application of the single event theory because any tractable chemical analysis of a paraffin mixture 

allows determining isomers up to p + q = 3 at most. The parallelization of the program over various  

p and q is then straightforward since ,

,

( ) ( )p q

p q

G n G n  and ,

,

p q

p q

G   where ( )G n  is 

the full set of paraffins UFC with n carbon atoms. The granularity can even be finer since the 

sets Gp,q(n) themselves can be partitioned with respect to the automorphism group of the graph 

of the molecule. Let us mention that S1 is the identity which means that the molecule has no 

symmetry. The order of the automorphism group is the cardinal of this group and is representative 

of the degree of indistinguishability of the atoms constituting the molecule. As explained in the 

introduction, it can be viewed as the product of external and internal symmetries 8 provided that 

the free rotation of terminal –CH3 is excluded. This is because our approach focuses on carbon 

atoms and ignores hydrogen atoms. If there are M terminal methyl groups, the “chemical global 

symmetry” is σglobal = 3M σ when chirality is ignored (structural isomers generation). Table III 

provides characteristics of G2,2 (n) up to n = 25 carbon atoms when chirality is not considered. 

Inspecting the (S2)3, S2xS3, (S2)4 and (S3)2 columns immediately suggests some recurrence 

formulae. These formulae depend on p, q and the automorphism group, and they must be derived 

case by case; this can be done systematically for all the columns in Table III. Eventually, they 

yield the number of isomers for arbitrary n without requiring the exhaustive generation. Some 

recurrences appear to be so “obvious” that rigorous demonstrations are useless from a pragmatic 

point of view. Such recurrences are explicitely described for charged molecules (ions) by Valéry et al 20. and by 

Guillaume et al 21 . From the numbers obtained, we can easily compute the associated numbers for 

stereo-isomers presented in Table III-bis by using simple isomorphism tests. 

p=2 

q=2 

automorphism group  

n 
1S  2S   

2

2S  3S   
3

2S  2 3S S   
4

2S   
2

3S  sum 

11 0 0 0 0 0 0 1 1 2 

12 0 0 3 0 3 4 0 1 11 

13 0 6 15 2 3 8 2 1 37 
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14 2 30 32 6 7 12 0 1 90 

15 14 74 62 12 7 16 2 1 188 

16 42 158 93 20 11 20 0 1 345 

17 102 276 141 30 11 24 2 1 587 

18 204 456 186 42 15 28 0 1 932 

19 372 684 252 56 15 32 2 1 1414 

20 620 996 311 72 19 36 0 1 2055 

21 980 1370 395 90 19 40 2 1 2897 

22 1470 1850 468 110 23 44 0 1 3966 

23 2130 2406 570 132 23 48 2 1 5312 

24 2982 3090 657 156 27 52 0 1 6965 

25 4074 3864 77 182 27 56 2 1 8983 
 

 

 

Table III: Distribution of isomers according to the automorphism group. The lateral branches are composed by 2 

methyls ans 2 ethyls 

 

p=2 

q=2 

automorphism group  

n 
1S  2S   

2

2S  3S   
3

2S  2 3S S   
4

2S   
2

3S  sum 

11 0 0 0 0 0 0 1 1 2 

12 0 0 6 0 5 6 0 1 18 

13 0 26 36 8 5 12 2 1 90 

14 16 153 77 24 13 18 0 1 302 

15 140 403 155 48 13 24 2 1 786 

16 456 902 232 80 21 30 0 1 1722 

17 1184 1616 358 120 21 36 2 1 3338 

18 2472 2727 471 168 29 42 0 1 5910 

19 4668 4145 645 224 29 48 2 1 9762 

20 7984 6108 794 288 37 54 0 1 15266 

21 12 896 8470 1016 360 37 60 2 1 22842 

22 19 680 11 525 1201 440 45 66 0 1 32958 

23 28 940 15 071 1471 528 45 72 2 1 46130 

24 41 016 19 458 1692 624 53 78 0 1 62922 

25 56 640 24 428 2010 782 53 84 2 1 83946 
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Table III-bis: Distribution of stereo-isomers according to the automorphism group. The lateral branches 

are composed by 2 methyls ans 2 ethyls. 

In Figure 10, we give a few examples of molecules with n = 11, 12 and 13 having as automorphism 

groups S2 x S3, (S2)4 and (S3)2. The calculation of the number of stereo-isomers performed here 

can be considered as an extension of the method by Muller et al. 9 since the chirality properties 

are properly taken into account. We will come back to this point in the conclusion and see how 

the methods presented in this paper can be extended to a more general class of molecules than the 

paraffins UFC. 

However, the diversity of such families Gp,q increases with n as noticed by Lygeros et al. 7.  A second method 

of generation called “mixed” consists in using the already known topological structure and the 

previously developed recurrence formulae and in generating explicitly the new families created as 

n increases 7. 

It is worth insisting on the fact that the knowledge of the detailed structure of all the isomers 

and stereo-isomers in a very precious information in order to conduct accurate thermochemical and 

kinetic calculations. This will be illustrated in the next section 

 

 

FIG 10 – Examples of molecules having S2 x S3, (S2)4 and (S3)2 as automorphism group. 
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4 Applications 

We will here measure the impact of the enumeration and generation on applications. The first 

subsection will be devoted to the enumeration of stereo-isomers when the molecule admits at least 

one chiral carbon atom, a situation where the number of stereo-isomers is usually approximated 

by 2N, N being the number of chiral carbon atoms. The second subsection will deal with Benson 

evaluation of entropy when chirality and global symmetry interfere. Using statistical physics and 

the results presented above, a general symmetry correction for entropy will be demonstrated for 

paraffins UFC. 

In this section, since we consider paraffins UFC, the only possibility of getting a factor of three 

in the number of indistinguishable configurations due to the symmetry of the molecule is to be 

found at the extremities and can not interfere with chirality as already mentioned (See Figure 14 

at the end of this section for a richer situation). Consequently, according to Benson’s method 8, 

the entropy of formation of a given structural isomer is given by: 

0 0

contrib corrS S S                                                                            (3) 

where S0
contrib is an “intrinsic” term due to the groups that compose the molecule, and Scorr is a  

term accounting for symmetries. In the framework of paraffins UFC, if we exclude some particular 

degenerate situations that can be treated separately, we have 

                                                    intglob M

corr corr corr corrS S S S    

where the second term is purely due to S2 or S3 symmetries at the extremities due to C-C rotations 

(internal symmetries), where the last one is due to terminal methyl groups and where the first term 

accounts for the global symmetry of order two eventually coupled to chirality. 

 In this section, we then focus on the exact evaluation of the number of stereo-isomers and on 

the interference of chirality and global symmetries of the molecules. 

4.1 Symmetry, Chirality and the number of stereo-isomers 

The explicit enumeration of stereo-isomers is conducted starting from the generated set of 

structural isomers with the automorphism group associated to the graph of each molecule. At this 

level global symmetry and chirality can interfere as in the example of Figure 2 provided in the 

introduction. 

In fact, each graph, symbolizing a structural isomer, yields one more stereo-isomer configu- 

rations according to the number of chiral vertices it contains. In the case of Figure 8, the presence 

of a chiral atom generates two stereo-isomers. It is related to the number Noi introduced in Benson 

for the calculation of the formation entropy 8. In the case of N chiral atoms, if we use the notation 

introduced in the 3D-coding of the molecules, the graph, symbolizing a structural isomer generated 

2N AB-configurations (depending on the position of the two branches: Above or Below) such as 

the 16 AB configurations represented in Figure 11. 
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The number of stereo-isomers is clearly 2N if the graph does not have a global symmetry of order 

two in his automorphism group. Indeed, let us consider the symmetrical graph which contains 4 

chiral carbon atoms represented in Figure 11. Out of the 24 = 16 AB-configurations, several are 

one-to-one isomorphic and joined by arrows. Thus there are 16 AB-configurations to be enumerated 

but only 10 distinguishable stereo-isomers as represented in Figure 11. Besides the various stereo- 

isomers can have various group of 3D symmetries preserving the orientation (rotations but not 

planar symmetries); in Figure 11, the stereo-isomers corresponding to the AB-configurations at 

the corners admit a symmetry of order 2, whereas the other ones do not admit any symmetry. 

At a general level, let us remark that this situation can be encountered only when N is even  

(when N is odd, the molecule cannot be symmetric) and let us conduct the enumeration of the 

stereo-isomers and degree of symmetry for an arbitrary even N in the following lemma. 

 

 

FIG. 11 – A paraffin molecule UFC and its various AB-configurations, with a global symmetry and 

four chiral carbon atoms. 

Lemma.  – Let us consider a paraffin UFC which admits a global symmetry and a number of N  

chiral atoms, N even. 

Case I: assume that it satisfies one of the two conditions: 

(i) the main chain admits an even number of carbon atoms, 

(ii) the main chain admits an odd number of carbon atoms and the remaining two branches of 

the central carbon atom are the same. 

Then there are 2N-1 + 2N/2-1 stereo-isomers; 2N/2 have a symmetry of order two and the other  

(2N – 2N/2)/2 do not have any symmetry. 
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Case II: the main chain admits an odd number of carbon atoms and the remaining two branches 

of the central carbon atom are different. Then the number of stereo-isomers is 2N without any 

symmetry. 

Proof: Indeed, each side branch is either ‘Above’ or ‘Below’ the plan of the main chain. From a 

given graph, let us consider the set EN formed by the 2N configurations obtained by combinations 

of the positions of the side branches (the unit E4 is represented figure 11). The main chain is the 

same for any element of EN and admits symmetry by rotation of axis (orthogonal to the plan if 

the chain has an even number of carbons, in the plan if not). Let us consider the case (i), the other 

case (ii) being essentially the same. The image of an element EN from this rotation belongs to EN 

(this operation amounts to the reversing certain connections). The image and the antecedent are 

confused in EN if the configuration is invariant by rotation. These configurations are 2N/2. The 

total number of elements of EN non-isomorphic one-to-one is then given by: 

/ 2
/ 2 / 2 1 / 2 1

/ 2 1 1

2 2
2 2 2 2

2

2 2

N N
N N N N

N N

 

 


   

 

 

In the situation of Case II, for example if the central carbon atom, which belongs to the axis of 

symmetry has H and CH3 as the two other branches, we can consider the same reasoning as before 

forgetting the branches on the central carbon atom and then see the influence of these branches. 

It is easy to see that each of the 2N/2 symmetrical configurations generates 2 configurations which 

are isomorphic to each other, thus generating the same number of stereo-isomers. As far as 

the other 

/ 22 2

2

N N
 configurations are concerned, each of them generates two stereo-isomers so that 

finally they sum of the two reaches 2N. 

Some examples of the two cases investigated in the Lemma are presented in Figure 12 and Figure 

13. In case II, remark that a substituted central carbon atom is never chiral although the two 

halves of the main chain can be in different optical configurations. 



 

 

20 

 

FIG 12 – Examples of configurations where symmetry and chirality interfere – Case I 

 

FIG 13 – Examples of configurations where symmetry and chirality interfere – Case II 

Table IV gives the number of paraffin stereo-isomers according to N in Case I. From the lemma, 

we see that using 2N asymptotically overestimate the number of stereo-isomers by a factor 2 for 

large N.  

N Number of stereo-isomers 2N Percentage of errors 

2 3 4 33.3% 

4 10 16 60.0% 

6 36 64 77.8% 

8 136 256 88.2% 

10 528 1024 93.9% 

 

Table IV: Number of paraffin stereo-isomers according to N in Case I. 
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Now that we have the exact number of stereo-isomers, it is tempting to use Benton’s formula 

with this number instead of 2N and σgraph as defined in the introduction. However, things are not 

that simple as we will see in the next sub-section. 

4.2 Entropy of formation – back to statistical physics 

The purpose of the present sub-section is to demonstrate that the usual formula used by Benson 

for the evaluation of the entropy correction can fail in the sense of statistical physics in the case   

when chirality does interfere with the automorphism group of the graph associated to the structural 

isomer. If no interference is to be found, the number of stereo-isomers is 2N, N being the number 

of chiral carbon atoms and the entropy correction due to chirality and global symmetry of order 2 

is 8 

12
log( ) log(2 )

2

N
glob N

corrS     

In the situation where the paraffin molecule UFC has a global symmetry in Case I or II, we 

define the racemic mixture by assuming that all the AB-configurations have equal chance to be 

represented thus defining various mole fractions for the various stereo-isomers depending on how 

many AB-configuration they represent. The previous formula is still valid in Case I, but as we 

will see in the following, a compensation is taking place, but ceases to be valid in Case II and the 

correct value is given by the following Theorem. 

Theorem. – Let us consider a paraffin UFC with a global symmetry and N chiral atoms, N even. In 

Case I, there are 2N-1 + 2N/2-1 stereo-isomers and the entropy correction in the sense of Benson 

due to chirality and global symmetry of order 2 is given by  

* 1log(2 )glob N

corrS   

In case II, there are 2N stereo-isomers and this entropy correction is given by: 

* log(2 )glob N

corrS   

Proof: In the present situation, we consider the racemic mixture of the stereo-isomers. As explained 

in the previous Lemma, if conditions (i) or (ii) are satisfied, we have two types of stereo-isomers, 

the ones which have a global 3D symmetry of order σ0 = 2 (they are denoted by type a, their set 

in noted A and there are 2N/2  molecules) and the ones for which the global symmetry is broken by 

the chiral effects, but which are generated under two isomorphic forms (they are denoted by type 

b, their set in noted B and there are 2 N-1 – 2N/2-1 molecules) 

We know from statistical physics 22 that the entropy correction is due to both the mixing 

entropy of the various stereo-isomers and the symmetric character of stereo-isomers of type a:  

*

0

1 1
log logglob

corr k k

k A k Bk k

S X X
X X 

   
    

   
   

Where Xk denotes the molar fraction of the kth stereo-isomer. However, Xk = 1/2N, for k   A and  

Xk = 1/2N-1, for k  B. Thus 
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/ 2 / 2
* 1 1 12 2 2

log(2 ) log(2 ) log(2 )
2 2

N N N
glob N N N

corr N N
S   

    

We then recover the formula we were looking for in Case I. In Case II, following the same sort of 

arguments, we obtain: 

/ 2 / 2
* 2 2 2

log(2 ) log(2 ) log(2 )
2 2

N N N
glob N N N

corr N N
S


    

Consequently, we have provided a general justification of Benson’s formula in the situation when 

chirality and global symmetry interfere for paraffins UFC in case I and identified a situation where  

it fails since one should find log(2N-1) too in case II. One has also to be careful not to extend  

Benson’s formula by taking 
** logglobal

corrS




 
  

 
 where   denotes the number of stereo-isomers as 

calculated in the Lemma. 

Let us insist on the fact that the chirality only interferes with global or “external” symmetries is purely due to the 

constraint associated with the paraffins UFC. In the following we 

provide a complementary example presented in Figure 14 which does not fulfill Froment's condition; 

it admits an internal symmetry of order three which interferes with the chirality present in the R 

 

 

FIG 14 – A configuration for which chirality interferes with internal symmetries (RD denotes the 

radical R in its dextrogyre configuration and RL, the radical R in its levogyre configuration). 

radical. The purpose of this example is two-fold: first it proves that chirality can also interfere 

with internal symmetries and second it provides a case where Benson’s formula still holds. 
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The entropy correction then reads: 

* 3 8 1 8
2 log( ) 2 log( )

8 3 8 3

glob

corrS    

and is coherent with Benson’s formula since the structure of the internal symmetry does not fulfill Froment's 

condition. It is represented in Figures 15 and 16.  

 

FIG 15 – A configuration for which chirality interferes with symmetries and creates a possible new 

chiral carbon atom (the 2x suggests the presence of two enantiomers). 

The entropy correction for this first example reads: 

* 1 16 2 16 2 16 1 16 2 16
2 log( ) 2 log( ) 2 log( ) 2 log( ) 2 log( )

16 1*2 16 2 16 2 16 1*2 16 2*2

glob

corrS       

* 3 1 3
log(8) log(2) 2log(2) log(2)

4 2 4

glob

corrS      

whereas Benson’s formula predicts 3 log(2). It is interesting to note that in Figure 15, in the last 

row, the central carbon atom does not get any chiral character (the “2x” sign mentioning the 

presence of two enatiomers is not to be found in such a case). If the planar symmetry which results 

in σglob = 2 were to be eliminated, we would the recover Benson’s formula in the case where the 

symmetry number is exactly the one associated to the order of the automorphism group of the 

corresponding structural isomer. 

 In the theorem of section 4.2, Froment's condition imposed a single possibility for Benson’s 

formula not to be valid and this scenario was the appearance of a new chiral carbon atom 

due to the presence of other optically active centers. This is a more peculiar case as compared to 

the previous one since the central carbon atom can be chiral or not depending on the preserved 
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symmetry (see Figure 15). This situation can be relatively rich as observed on the next example of 

Figure 16. 

 

 

FIG. 16 – A configuration for which chirality interferes with symmetries  

and creates a possible new chiral carbon atom. 

 The entropy correction for this first example reads: 

 

* 1 16 4 16 6 16
2 log( ) 2 log( ) log( )

16 12 16 4*3 16 6*4

glob

corrS     

* 1 2 4 2 1
log( ) log( ) log( ) log(2)

2 3 3 3 2

glob

corrS
 

    
 

 

whereas Benson’s formula predicts 
2

log( )
3

. 

 These two examples illustrate in a very convincing fashion the possible interferences between  

chirality and symmetries and suggest a possible general formula in order to correct Benson’s formula. 

 It is also then interesting to measure the impact of the exhaustive generation conducted in this 

paper and to realize that the knowledge of the various configurations of the stereo-isomers with  

their associated symmetries yields a better understanding of the interaction of global symmetry 

and chirality. 

5 Conclusion  
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Our effective approach of the problem of the isomorphic enumeration of stereo-isomers is basically different from 

Pòlya’s method and Read’s method because it is based on an exhaustive  

generation of the geometric structure as well as optical activity and degree of symmetry of the 

alkanes and not simply the global number of stereo-isomers. 

 In our approach, the geometrical structure, which can be interpreted for an alkane molecule 

as an embedding into a centered network of non-regular octahedral paving the 3D space, does not  

only result in the definition of formal series and finally in a way of calculating the global number 

of-stereo-isomers as in Read, but all the non-isomorphic stereo-isomers are generated with their 

degree of symmetry. 

 Besides, this exhaustive approach can be adapted to specific graph subfamilies of alkane molecules which 

are mostly encountered in practical applications. It is worth noting that the enumeration of stereo-isomers of such 

subfamilies with the approach of generating functions provides a certificate. 

 Moreover, this new approach provides an important new feature: it becomes possible to use a 

combinatorial approach to obtain physical or chemical properties of mixtures of stereo-isomers as 

the emergence of geometrical properties of the various configurations. 

As a perspective of the present work, it is worth making the link with the paper by Muller et al. 9 , where 

classes of much more complex molecules are considered as compared 

with the class of alkanes UFC. However, chirality is not taken into account in details so that the 

evaluation of the number of stereo-isomers, the associated degree of symmetry of the molecules 

and the corresponding entropy correction can only be done approximately, even if it is done with a 

good approximation. It is clear that the approach proposed in this paper can be generalized to such 

classes of molecules following the techniques developed by Muller et al. 9 and relating it to the tools we have 

developed. In the present work, the determination of the focus and of the resulting decomposition 9 

 is very simple because of the structure of the alkane molecules UFC and it is equivalent to 

what is done in section 3 during the tests for isomorphy in order to determinate the automorphism 

group of the structural isomers.  

The mathematical frame presented here enlightens the results of the recurrence formulae that were 

established for the modeling of hydrocracking of long paraffins by the single event kinetic methodology 20,21. 

Thus, this approach opens new perspectives in the field of organic and statistical chemistry 

since it is intrinsically adequate for problems in which the spatial configurations of the various  

molecules have a key role in the global properties of the mixture of stereo-isomers.  
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7 Appendix: Details of the proof for generating functions 

Let us recall the details of the Theorem: 

Theorem. – The number of structural isomers of paraffin molecules with n carbon atoms under  

Froment's condition is given by the coefficient of xn in 

2

( ) ( ) 1 1 ( )
( );

1 ( ) 2 1 ( ) 1 ( )

neq eq

i i
i

S b x S x b x
P x

b x b x b x
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   
 

                                                    2 3 4 5( ) 2b x x x x x x      
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And                            
2 3 4 5 6 7( ) 2iP x x x x x x x x        

 

- The number of stereo-isomers of paraffin molecules with n carbon atoms under Froment's condi- 

tion is given by the coefficient of xn in 
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                     And                 2 3 4 5 6 7 8 9 10 11( ) 2 3 4 7 8 9 7 6sP x x x x x x x x x x x x            

Proof: 

 We start by considering the problem of counting structural isomers. In the following, the skeleton 

 of a paraffin UFC will denote two radicals X and Y joined by a chain of carbon atoms. Thus, these 

 paraffin molecules will be composed by a skeleton on which radicals are connected. For the purpose 

 of counting structural isomers, X and Y will take their value in the set F , whereas they will take 

 their value in an other set, denoted sF , for the purpose of counting stereo-isomers in the second 

    part of the proof. In Figure 4-left, X, Y are in F, Qi and Ri radicals such that: 

   

                  2 5 3 2 3 3 3 2 5{ , ( ) , ( ) }, , { , , }i iF C H CH CH C CH Q R H CH C H           

  

 This extension of the concept of main chain will then be coherent with Read’s method and 

 allows us to control isomorphism phenomena at extremities. Furthermore, the similarity between 

 the structure of paraffins UFC and the structure of di-substituteed hydrocarbons (CnH2nXY), enumerated               

by Read, is now obvious. 

 Let us first suppose that X and Y are different. Consider any pair of ‘boxes’ Qi and Ri. Since 

 we are counting structural isomers as presented in Figure 4-(a), we can permute these radicals 

 independently from the others, and it follows that the group of permutation is S2  x  S2 x… x S2 

 with p factors. Thus, the cycle index is the polynomial in the variables s1, s2 given by the following 

 expression 

2

2 1 2

1
{ ( )} ( )

2

p p

p
Z S s s   

 Let c(x) be the figure counting series; we have c(x) = 1 +x+x2 where the 1 indicates that the 

 position (Qi or Ri) is taken by hydrogen, while x by a methyl radical, and x2 by an ethyl radical. 

 Thus, with Pòlya’s Theorem the counting series is 
2 21

( ( ) ( ))
2

p

p
c x c x . Taking into account the 

 extra carbon atoms in the skeleton, we obtain the ‘shift’ polynomial 
5 2(1 )p neq p

ix S x x x x   , 

 and we see that the number of ways of allocating alkyl radicals to 2p boxes is therefore given by 

 the coefficient of xn in 

                                                                     
2 2[ ( ) ( )]

( ),
2

p p
neq neq p

i ip

x c x c x
S S b x


  
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2 2 2 3 4 5( ) [ ( ) ( )] 2

2

x
b x c x c x x x x x x        

 To find the total number of compounds when X and Y are different we must sum p  {1, 2, …}   

 and we obtain 

1

( )
( )

1 ( )

neq
neq p i
i

p

S b x
S b x

b x








  

                  When X and Y are the same, the skeleton admits a supplementary global symmetry. If p=2k is even    

               then, the group of permutations is now 2 2 2[ ... ]S S S  (k factors), whose cycle index is  

                                                                           2 2 2

1 2 2 4

1 1 1
[ ( )] [ ( )]

2 2 2

k ks s s s
 

   
 

 

 We obtain the series  

                                                    
4 2 4

2 2 2 2(1 )
( ) ( ) { ( ) ( )};

2 2

eq
k k k kiSx x x

b x b x b x b x
 

     

                where b(x) is given by (8) and 
4 2 4(1 )eq

iS x x x   . 

 If p = 2k + 1 is odd then, the group of permutations is S2 x S2 [S2 x … x S2] (k factors) which 

 eventually gives us the counting series 

2 2( ){ ( ) ( )}
2

eq
k kiS

b x b x b x  

 We now sum (10) and (11) over all values of k: 

2 2 2 2

2
0 0

1 1 ( )
[ ( ) ( )] ( )[ ( ) ( )]

2 2 1 ( ) 1 ( )

eq eq
k k k ki i

k k

S S b x
b x b x b x b x b x

b x b x

 

 

  
       

    
   

 The last step is to explicitly express the counting polynomial Pi (x) which enumerates paraffins 

 for small values on n which can not be obtained by the previous method because of the structure 

 of F and consequently of the skeleton. For n up to 7, we obtain 

2 3 4 5 6 7( ) 2iP x x x x x x x x        

 Thus, this counting series of structural isomers of Paraffins UFC is obtained by summing (9), (12) 

 and (13). 

 To enumerate the paraffins, having regard to stereo-isomers, we use the same method as before. 

 Taking into account the chirality, we have to consider a 3D representation as illustrated in Figure 

 4-(b). However a new difficulty arises. Actually, the set of extremities can not be taken to the F any 
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 more because of the possible chirality of the third carbon starting from one end of the main chain, 

 which will depend on the branches R1 and Q1. In order to avoid these interferences, the length 

 of the main chain involved in the extremities has to be 3 carbon atoms. Here is, for example, the 

 possibilities when X or Y have 6 carbon atoms: 

 The figure counting series is the same as in the first case ans is still given by c(x) = 1 + x + x2. 

 If X and Y are different, the group is E2p (identity group) and the associated cycle index is 

 ***. Therefore, the counting series given by Pòlya’s theorem is c2p(x). Now we have to take into 

 account the extra carbon atoms in X and Y. The possible combinations are given in Table I. 

Number of 

carbon atoms 

7 8 9 10 11 12 13 14 15 16 17 

Number of 

configurations 

3 8 21 34 51 55 54 38 24 9 3 

 

 

Table V. Number of configurations for different radicals X and Y with n carbon atoms as a whole. 

 These numbers allow to determinate the “shift” polynomial 
neq

sS : 

7 2 3 4 5 6 7 8 9 10( ) (3 8 21 34 51 55 54 38 24 9 3 )neq

sS x x x x x x x x x x x x            

Thus we obtain  

2 2

1 0

2

( ) ( ) ( )

( )

1 ( )

neq p p neq p p

s s

p p

neq

s

S x x c x S x x c

S x

xc x

 

 






 
 

If X and Y are the same, the group is S2[Ep] whose cycle index is 
2

1 2

1
( )

2

p ps s . The counting 

series is then 

                                                                   2 21
( ) ( )

2

p pc x c x    

As in the case X ≠Y, we provide the table which contains the numbers of possibilities for the 

extremity: 

Number of atoms carbon 6 8 10 12 14 16 18 

Number of configurations 1 3 5 6 6 3 1 
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Table VI. Number of configurations for radical X = Y with , carbon atoms as a whole. 

We deduce the “shift” polynomial, 
eq

sS  

 
6 2 4 6 8 10 12( ) (1 3 5 6 6 3 )eq

sS x x x x x x x x        

We now sum for 0p   

 2 2

0

( ) ( ) ( )
2

p
p p eq

x

p

x
c x c x S x





    

                                                                                       2 2

0

( ) [ ( ) ( )]
2

p
eq p p

s

p

x
S x c x c x





   

 
2 2

( ) 1 1
[ ]

2 1 ( ) 1 ( )

eq

sS x

xc x xc x
 

 
 

Finally, the counting polynomial Ps (x), analogous of Pi(x) (13) is given by 

2 3 4 5 6 7 8 9 10 11( ) 2 3 4 7 8 9 7 6sP x x x x x x x x x x x x           . 

The configuration counting series which gives us the number of stereo-isomers of paraffins UFC 

is finally obtained on summing (14), (16) and (17).  


