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Abstract 
The Level Variable (LV) construction is a hyperstructure containing a 

hyperoperation defined on every graded finite poset. More precisely, on 
graded posets with s levels we can use Hv-groups, one of them is an e-Hv-
group S, needed in Santilli’s iso-theory, where we define an LV-
hyperoperation and we obtain an e-Hv-group. The important result is that the 
fundamental structure is isomorphic to the fundamental group of the initial 
e-Hv-group S. We extend these constructions to Hv-fields in order to have 
‘hypernumbers’ appropriate in Santilli’s iso-theory. Finally, we face the 
problem of enumeration of such constructions defined on finite small sets.    
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1.   Fundamental Definitions 
In a set H is called hyperoperation (abbreviation hyperoperation=hope) in a set H, is 
called any map ⋅ :H×H→P(H)-{∅}. 

Definition 1.1 Marty 1934. A hyperstructure (H,⋅) is a hypergroup if (⋅) is an associative 
hyperoperation for which the reproduction axiom:  hH=Hh=H, ∀x∈H, is valid. 
Definition 1.2 Vougiouklis 1990. In a set H with a hope we abbreviate by WASS  the 
weak associativity: (xy)z∩x(yz)≠∅,  ∀x,y,z∈H  and by COW  the weak commutativity:  
xy∩yx≠∅,   ∀x,y∈H.  The hyperstructure (H,⋅) is called Hv-semigroup if it is WASS, it 
is called Hv-group if it is reproductive Hv-semigroup, i.e. xH=Hx=H, ∀x∈H.  The 
hyperstructure (R, +,⋅) is called Hv-ring if both (+) and (⋅) are WASS, the reproduction 
axiom is valid for (+) and (⋅) is weak distributive with respect to (+):   
x(y+z)∩(xy+xz)≠∅,  (x+y)z∩(xz+yz)≠∅,   ∀x,y,z∈R. 

Definition 1.3 Santilly-Vougiouklis. A hyperstructure (H,⋅) which contain a unique 
scalar unit e, is called e-hyperstructure. A hyperstructure (F, +,⋅), where (+) is an 
operation and (⋅) is a hyperoperation, is called e-hyperfield if the following axioms are 
valid:  
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1.  (F,+) is an abelian group with the additive unit 0, 

2.  (⋅) is WASS, 

3.  (⋅) is weak distributive with respect to (+), 

4.  0 is absorbing element:  0⋅x=x⋅0=0, ∀x∈F, 

5.  There exists a multiplicative scalar unit 1, i.e.  1⋅x=x⋅1 = x, ∀x∈F, 

6.  For every x∈F there exists a unique inverse x-1, such that   1∈x⋅x-1∩x-1⋅x.   
The elements of an e-hyperfield are called e-hypernumbers. In the case that the 

relation: 1=x⋅x-1=x-1⋅x, is valid, then we say that we have a strong e-hyperfield.  

Construction1.4 Main e-Construction.  Given a group (G,⋅), where e is the unit, then we 
define in G, a large number of hyperoperations (⊗) as follows:   

x⊗y = {xy, g1, g2,…}, ∀x,y∈G-{e}, and g1, g2,…∈G-{e} 

g1, g2,… are not necessarily the same for each pair (x,y). Then (G,⊗) becomes an Hv-
group, in fact is Hb-group which contains the (G,⋅). The Hv-group (G,⊗) is an e-
hypergroup. Moreover, if for each x, y such that xy=e, so we have x⊗y=xy, then (G,⊗) 
becomes a strong e-hypergroup.  

The main tool to study hyperstructures are the fundamental relations β*, γ* and 
ε*, which are defined, in Hv-groups, Hv-rings and Hv-vector spaces, resp., as the 
smallest equivalences so that the quotient would be group, ring and vector space, resp. 
Fundamental relations are used for general definitions. Thus, an Hv-ring (R, +,⋅) is 
called Hv-field if R/γ* is a field. 

Definition 1.5 Let (H,⋅), (H,∗) be Hv-semigroups defined on the same set H. Then (⋅) is 
called smaller than (∗), and (∗) greater than (⋅), iff there exists an f∈Aut(H,∗)  such that   
xy⊂f(x∗y), ∀x,y∈H. Then we write ⋅≤∗ and we say that (H,∗) contains (H,⋅). If (H,⋅) is 
a structure then it is called basic structure and (H,∗) is called Hb-structure. 
Theorem 1.6 (The Little Theorem). Greater hopes than the ones which are WASS or 
COW, are also WASS or COW, respectively. 

This Theorem leads to a partial order on Hv-structures, thus we have posets. The 
determination of all Hv-groups and Hv-rings is very interesting. To compare classes we 
can see the small sets. The problem of enumeration of classes of Hv-structures was 
started very early but recently we have results by using computers. The partial order in 
Hv-structures restricts the problem in finding the minimals. 

2. Enumeration Theorems 
Theorem 2.1 Chung-Choi. There exists up to isomorphism, 13 minimal Hv-groups of 
order 3 with scalar unit, i.e. minimal e-hyperstructures of order 3. 
Theorems 2.2 Bayon-Lygeros.  

►  There exists up to isomorphism, 20 Hv-groups of order 2.  
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► There exists up to isomorphism, 292 Hv-groups of order 3 with scalar unit, i.e. e-
hyperstructures of order 3. 

►   There exists up to isomorphism, 6494 minimal Hv-groups of order 3. 
►   There exists up to isomorphism, 1026462 Hv-groups of order 3. 

Theorems 2.3 Bayon-Lygeros.  
►   There exists up to isomorphism, 631 609 Hv-groups of order 4 with scalar unit, i.e. 

e-hyperstructures of order 4. 
►    There exists up to isomorphism, 8.028.299.905 abelian Hv-groups of order 4. 

Theorems 2.4 Bayon-Lygeros.  
► The numbers of abelian Hv-groups of order 4 with scalar unit (i.e. abelian e-

hyperstructures) in respect with their automorphism group are the following: 
 

|Aut(Hv)| 1 2 3 4 6 8 12 24
_ _ _ 32 _ 46 5510 626021  

 

►   They are 63 isomorphism classes of hyperrings of order 2. 
►   They are 875 isomorphism classes of Hv-rings of order 2. 

►   They are 33277642 isomorphism classes of hyperrings of order 3. 
In all the above results we construct the poset of hyperstructures of order 2 and 3 

in the sense of inclusion for hyperproducts. We compute the Betti numbers of the poset 
of Hv-groups of order 2 and we have the following results: (1, 5), (2, 4), (3, 6), (4, 4), 
(5, 1). We also compute the Betti numbers of the poset of hypergroups of order 3 and 
we have the following results : (1, 59), (2, 168), (3, 294), (4, 438), (5, 568), (6, 585), (7, 
536), (8, 480), (9,358), (10, 245), (11,160), (12, 66), (13, 29), (14, 10),  (15, 2), (16,1). 

We explicitly compute the Cayley subtables of the minimal e-hyperstructures with 
H={e,a,b} and we have for the products (aa, ab, ba, bb) the following results: (b; e; e; 
a), (eb; a; a; e), (e; ab; ab; e), (a; eb; eb; a), (ab; ea; ea; e), (H; eb; a; ea), (H; a; eb; ea), 
(a; H; H; e), (b; H; H; e), (a; H; H; b), (H; b; a; H), (H; a; b; H), (H; e; ab;  H). 
3. Construction Theorems 

There are several ways to organize such posets using hyperstructure theory. We present 
now a new construction on posets and we name this LV-construction since it is based on 
gradations where the Levels are used as Variable. Thus LV means Level Variable.  
Theorem 3.1 The LV-Construction I 

Consider the set Pn of all Hv-groups defined on a set of n elements. Take the following 
gradation on Pn based on posets:  
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Level 0 (or grade 0), denoted by g0, is the set of all minimals of Pn. Level (grade) 1, 
denoted by g1, is the set of all Hv-groups obtained from minimals by adding one only 
element to anyone of the results of the products of two elements on the minimals of Pn,  
i.e. of g0. Level 2 (or grade 2), denoted by g2, is the set of all Hv-groups obtained from 
minimals by adding only two elements to anyone of the results of the products of two 
elements of the minimals g0. Then inductively the Level k is defined, denoted by gk. In 
the case that an Hv-group is obtained by adding k1 elements of one minimal and by 
adding k2 elements of another minimal then we consider that it belongs to the Level 
min(k1,k2).  

Denote by r the cardinality of the minimals, |g0|=r, and by s the number of levels. 
Take any Hv-group with r elements corresponding to the r elements of g0, so we have an 
Hv-group (g0,∗). Then we define a hope on  

Pn = g0∪ g1∪,…,∪gs-1, 

as follows    

     x∗y,  ∀x,y∈g0  
x⊗y =  

gκ+λ,  ∀x∈gκ, y∈gλ,  where (κ,λ)≠(0,0)  

Then the hyperstructure (Pn,⊗) is an Hv-group where its fundamental group is 
isomorphic to Zs, thus we have  

Pn /β*≈ Zs. 

Proof. Let us correspond, numbered, the levels with the elements of Zs: gi →i, i=0,…, s-
1. 

From the definition of (⊗) any hyperproduct of elements from several levels, apart 
of g0, equals to only one special set of Hv-groups that constitute one level. Moreover we 
have    

x⊗y = g0,  ∀x∈gκ, y∈g-κ,  for any κ≠0. 
That means that the elements of g0 are β*-equivalent.  Therefore all elements of 

each level are β*-equivalent and there are no β*-equivalent elements from different 
levels. That proves that   

Pn /β*≈ Zs.     ■ 
The above is a construction similar to the one from our book: Hyperstructures and 

their Representations [p.27]. 

A generalization of the above construction is the following:  
Theorem 3.2 The LV-Construction II 

Consider a graded finite poset with n elements: Pn=g0∪g1∪,…,∪gs-1, with s levels 
(grades) g0, g1,…, gs-1, such that  |gi|=n. Denoting |g0|=r, we consider two Hv-
groups (E,⋅) and (S,∗) such that  |E|=r, |S|=s  and moreover S has a unit scalar and single 
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element e. Then we take 1:1 maps from E onto g0 and from S onto {g0, g1,…, gs-1}, so 
we obtain two Hv-groups:  (g0,⋅) and (G={g0, g1,…, gs-1},∗) where  E= g0 corresponds to 
the scalar single element e. We define a hope on Pn as follows: 

     x⋅y,  ∀x, y∈g0  
x⊗y =  
   gκ∗gλ,   ∀gκ, gλ ∈G,  where (κ,λ)≠(0,0)  

Then the hyperstructure (Pn,⊗) is an Hv-group where its fundamental group is 
isomorphic to the fundamental group of (S,∗), therefore we have  

(Pn,⊗)/β* ≈ (S,∗)/β*. 

Proof.  From the reproductivity of (G,∗), for each gκ, κ≠0, there exists a gλ such that   
g0∈gκ∗gλ.  But g0 is a single element of (S,∗), therefore we have g0=gκ∗gλ. Then, by the 
definition, for any   x∈gκ, y∈gλ   we have, x⊗y=g0.  Therefore, all the elements of g0 are 
β*-equivalent. On the other side, from the definition, all elements of each level are β*-
equivalent and they are β*-equivalent elements with different levels if and only if they 
are β*-equivalent in (G,∗). In other wards they follow exactly the β*-equivalence of 
(G,∗).  
That proves that   

(Pn,⊗)/β* ≈ (S,∗)/β*.     ■ 
With this LV-construction we can define the poset for Hv-groups of order 2.  So 

we get a non-connected poset with Betti numbers for the two subposets (1,4), (2,4), 
(3,1) and (1,1), (2, 4), (3,6).  

The following LV-construction III is originated from the principal realization of 
the Infinite Dimensional Kac-Moody Lie Algebras of the type An and Dn given in Kac’s 
book and our paper: On affine Kac-Moody Lie algebras. These algebras are graded 
where each level has some constant basis elements, which are obtained by sifting the 
basis elements of level zero, plus some extra basis elements. Therefore all levels have a 
number of corresponding 1:1 basis elements and some levels have some more elements.  

Theorem 3.3 The LV-Construction III 

Consider a graded finite poset with n elements: Pn=g0∪g1∪,…,∪gs-1,  with s levels 
(grades)  g0, g1,…, gs-1,  such that   |gi|=n  and we correspond the levels to the group 
(Zs,+). Denote r = min{|g0|,|g1|,…,|gs-1|}, then we select r elements from each level and 
we correspond 1:1 to the elements of the group (Zr,+), which we denote by r. Moreover, 
we correspond the extra elements of each level, to the element 1 which may became a 
set. Therefore, we have a partition of the set Pn, into classes gκ,λ , where κ denote the 
level and λ denotes the corresponding element of (Zs,+). All classes are singletons, 
except possible, of the case where λ=1.  We define a hope on Pn as follows: 

x⊗y = gκ+κ΄,λ+λ΄,   ∀x∈gκ,λ, y∈gκ΄,λ΄ ,  κ, κ΄∈Zs ,  λ, λ΄∈Zr 

Then the hyperstructure (Pn,⊗) is an Hv-group where its fundamental group is 
isomorphic to the (Zs×Zr, +).  
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Proof. It is clear that the only case we have β*-equivalent elements are when we have 
elements from gκ,1. Therefore, from the reproductivity, the only β*-equivalent classes 
are the gκ,λ, κ∈Zs, λ∈Zr. That proves that   

(Pn,⊗)/β* ≈ (Zs×Zr, +)/β*.     ■ 
We can generalize the LV-construction III by considering any group or Hv-group 

instead of above used Zn ones, in an analogous way. 
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