173 - The number of Orders with Fourteen Elements
N. Lygeros
Abstract. The number of non-isomorphic posets on 14 elements is P_14 = 1’338’193’459’771. This extends our previous result P_13 = 33’823’827’452 which constituted the greatest known value. A table enumerates the posets according to their number of relations.
Mathematics Subjects Classifications (1991). Primary 06-04; secondary 06A07, 05C30.
Key words. Unlabeled, partial orders, computer, enumeration.
Introduction
Here we consider only pariwise non-isomorphic posets and note P_n (resp. P_n,r) the number of those having n elements (and r relations).
0 <= n <= 6, P_n = 1; 1; 2; 5; 16; 63; 318
P_7 = | 2’045 | (1972) | J. Wright |
P_8 = | 16’999 | (1977) | S. K. Das |
P_9 = | 183’231 | (1984) | R. H. Mohring |
P_10 = | 2’567’284 | (1990) | J. C. Culberson, G. J. E. Rawlins |
P_11 = | 46’749’427 | (1990) | J. C. Culberson, G. J. E. Rawlins |
P_12 = | 1’104’891’746 | (1991) | C. Chaunier, N. Lygeros |
P_13 = | 33’823’827’452 | (1992) | C. Chaunier, N. Lygeros |
P_14 = | 1’338’193’159’771 | (2000) | N. Lygeros, P. Zimmermann |
Results
The last value extends [1], follows [6], [7] – origins of this work – and [2], [3] – where our initial algorithm is describred. The following table gives the precise results.
r | P_n,r | r | P_n,r | r | P_n,r |
0 | 1 | 30 | 15’093’556’839 | 60 | 3’461’298’437 |
1 | 1 | 31 | 20’075’844’431 | 61 | 2’493’875’402 |
2 | 3 | 32 | 25’908’418’088 | 62 | 1’770’675’277 |
3 | 7 | 33 | 32’478’923’331 | 63 | 1’239’039’207 |
4 | 19 | 34 | 39’592’931’224 | 64 | 854’569’812 |
5 | 47 | 35 | 46’979’502’004 | 65 | 560’970’065 |
6 | 133 | 36 | 54’307’727’007 | 66 | 389’321’463 |
7 | 355 | 37 | 61’211’924’728 | 67 | 257’162’269 |
8 | 1’020 | 38 | 67’323’642’504 | 68 | 167’425’100 |
9 | 2’921 | 39 | 72’305’442’194 | 69 | 107’425’128 |
10 | 8’632 | 40 | 75’882’802’702 | 70 | 67’918’114 |
11 | 25’486 | 41 | 77’869’195’951 | 71 | 42’302’121 |
12 | 75’366 | 42 | 78’181’684’187 | 72 | 25’947’267 |
13 | 217’990 | 43 | 76’844’939’859 | 73 | 15’667’333 |
14 | 613’701 | 44 | 73’984’081’629 | 74 | 9’307’819 |
15 | 1’659’796 | 45 | 69’807’866’652 | 75 | 5’436’986 |
16 | 4’290’662 | 46 | 64’585’100’397 | 76 | 3’120’222 |
17 | 10’541’968 | 47 | 58’617’924’003 | 77 | 1’757’459 |
18 | 24’574’810 | 48 | 52’215’061’893 | 78 | 970’342 |
19 | 54’282’974 | 49 | 45’668’403’312 | 79 | 524’242 |
20 | 113’695’015 | 50 | 39’234’427’091 | 80 | 276’596 |
21 | 226’043’606 | 51 | 33’122’134’980 | 81 | 142’020 |
22 | 427’434’085 | 52 | 27’486’947’185 | 82 | 70’684 |
23 | 770’364’708 | 53 | 22’430’638’497 | 83 | 33’907 |
24 | 1’326’574’992 | 54 | 18’005’406’984 | 84 | 15’527 |
25 | 2’187’816’296 | 55 | 14’221’396’017 | 85 | 6’724 |
26 | 3’463’953’205 | 56 | 11’055’548’408 | 86 | 2’701 |
27 | 5’276’878’418 | 57 | 8’461’181’255 | 87 | 978 |
28 | 7’750’426’625 | 58 | 6’376’703’312 | 88 | 309 |
29 | 10’995’675’430 | 59 | 4’733’381’232 | 89 | 78 |
90 | 13 | ||||
91 | 1 |
More information can be found on the Web at:
https://lygeros.org/poset/
These results confirm R. Fraïssé’s conjecture on unimodality. The values for 0 <= r <= 6 agree with J. C. Culberson and G. J. E. Rawlin's [4], and the values for 78 <= r <= 91 are confirmed by M. Erné's formulae.
Acknowledgement
This result would not have been possible without the help of Robert Erra, Bernard Landreau, John Lygeros, Jon Kierkegaard, Ilias Kotsireas, Joël Marchand, Michel Mizony, Thomas Papanikolaou, and Robert Piche.
References
1. C. Chaunier and N. Lygeros (1992) The number of orders with thirteen elements. Order, vol. 9, 203-204.
2. C. Chaunier and N. Lygeros (1992) Progrès dans l’énumération des poset, C. R. Acad. Sci. Paris, t. 314, série I, 691-694.
3. C. Chaunier and N. Lygeros (1994) Le nombre de posets à isomorphie près ayant 12 éléments. Theoretical Computer Science, n. 123, 89-94.
4. J. C. Culberson and G. J. E. Rawlins (1991) New results from an algorithm for counting posets, Order, vol. 7, 361-374.
5. M. Erné (1992) The number of partially ordered sets with more points than unrelated pairs, Discrete Math. 105, n. 1-3, 49-60.
6. R. Fraïssé and N. Lygeros (1991) Petits posets : dénombrement, représentabilité par cercles et compenseurs. C. R. Acad. Sci. Paris, t. 313, série I, 417-420.
7. N. Lygeros (1991) Calculs exhaustifs sur les posets d’au plus 7 éléments, Singularité, vol. 2, n. 4, 10-24.